Concepts inAn integrating approach to meshing scattered point data
Integral
Integration is an important concept in mathematics and, together with its inverse, differentiation, is one of the two main operations in calculus. Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral is defined informally to be the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b, such that areas above the axis add to the total, and the area below the x axis subtract from the total.
more from Wikipedia
Computer graphics (computer science)
Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.
more from Wikipedia
Sphere
A sphere (from Greek ¿¿¿¿¿¿ ¿ sphaira, "globe, ball") is a perfectly round geometrical object in three-dimensional space, such as the shape of a round ball. Like a circle, which is in two dimensions, a perfect sphere is completely symmetrical around its center, with all points on the surface lying the same distance r from the center point. This distance r is known as the "radius" of the sphere. The maximum straight distance through the sphere is known as the "diameter" of the sphere.
more from Wikipedia
In mathematics, a manifold is a mathematical object that on a small enough scale resembles Euclidean space. For example, seen from far away, the surface of the planet Earth is not flat and Euclidean, but on a smaller scale, one may describe each region via a geographic map, a projection of the surface onto the Euclidean plane. A precise mathematical definition of a manifold is given below. Lines and circles (but not figure eights) are one-dimensional manifolds (1-manifolds).
more from Wikipedia
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R ¿ for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
more from Wikipedia