In the mathematical field of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points. In engineering and science, one often has a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable. It is often required to interpolate (i.e.
more from Wikipedia
Conservative vector field
In vector calculus a conservative vector field is a vector field which is the gradient of a function, known in this context as a scalar potential. Conservative vector fields have the property that the line integral from one point to another is independent of the choice of path connecting the two points: it is path independent. Conversely, path independence is equivalent to the vector field being conservative.
more from Wikipedia
Poisson's equation
In mathematics, Poisson's equation is a partial differential equation of elliptic type with broad utility in electrostatics, mechanical engineering and theoretical physics. It is named after the French mathematician, geometer and physicist Siméon-Denis Poisson.
more from Wikipedia
Gradient
In vector calculus, the gradient of a scalar field is a vector field that points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is that rate of increase. A generalization of the gradient for functions on a Euclidean space that have values in another Euclidean space is the Jacobian. A further generalization for a function from one Banach space to another is the Fréchet derivative.
more from Wikipedia
Boundary value problem
In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional restraints, called the boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of physics as any physical differential equation will have them.
more from Wikipedia
Field (physics)
In physics, a field is a physical quantity associated with each point of spacetime. A field can be classified as a scalar field, a vector field, a spinor field, or a tensor field according to whether the value of the field at each point is a scalar, a vector, a spinor (e.g. , a Dirac electron) or, more generally, a tensor, respectively.
more from Wikipedia
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R ¿ for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
more from Wikipedia
Domain of a function
In mathematics, the domain of definition or simply the domain of a function is the set of "input" or argument values for which the function is defined. That is, the function provides an "output" or value for each member of the domain. For instance, the domain of cosine is the set of all real numbers, while the domain of the square root consists only of numbers greater than or equal to 0 (ignoring complex numbers in both cases).
more from Wikipedia