Radiance and spectral radiance are measures of the quantity of radiation that passes through or is emitted from a surface and falls within a given solid angle in a specified direction. They are used in radiometry to characterize diffuse emission and reflection of electromagnetic radiation. In astrophysics, radiance is also used to quantify emission of neutrinos and other particles.
more from Wikipedia
Gradient
In vector calculus, the gradient of a scalar field is a vector field that points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is that rate of increase. A generalization of the gradient for functions on a Euclidean space that have values in another Euclidean space is the Jacobian. A further generalization for a function from one Banach space to another is the Fréchet derivative.
more from Wikipedia
Global illumination
Global illumination is a general name for a group of algorithms used in 3D computer graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take into account not only the light which comes directly from a light source (direct illumination), but also subsequent cases in which light rays from the same source are reflected by other surfaces in the scene, whether reflective or not (indirect illumination).
more from Wikipedia
Irradiance
Irradiance is the power of electromagnetic radiation per unit area incident on a surface. Radiant emittance or radiant exitance is the power per unit area radiated by a surface. The SI units for all of these quantities are watts per square meter (W/m), while the cgs units are ergs per square centimeter per second (erg·cm·s, often used in astronomy). These quantities are sometimes called intensity, but this usage leads to confusion with radiant intensity, which has different units.
more from Wikipedia
Interpolation
In the mathematical field of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points. In engineering and science, one often has a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable. It is often required to interpolate (i.e.
more from Wikipedia
Displacement (vector)
A displacement is the shortest distance from the initial to the final position of a point P. Thus, it is the length of an imaginary straight path, typically distinct from the path actually travelled by P. A displacement vector represents the length and direction of that imaginary straight path. A position vector expresses the position of a point P in space in terms of a displacement from an arbitrary reference point O (typically the origin of a coordinate system).
more from Wikipedia
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R ¿ for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
more from Wikipedia