Concepts inSmall hop-diameter sparse spanners for doubling metrics
Metric space
In mathematics, a metric space is a set where a notion of distance between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3-dimensional Euclidean space. In fact, the notion of "metric" is a generalization of the Euclidean metric arising from the four long-known properties of the Euclidean distance.
more from Wikipedia
Inverse function
In mathematics, an inverse function is a function that undoes another function: If an input x into the function ƒ produces an output y, then putting y into the inverse function g produces the output x, and vice versa. i.e. , ƒ(x)=y, and g(y)=x. More directly, g(ƒ)=x, meaning g(x) composed with ƒ(x) leaves x unchanged.
more from Wikipedia
Bounded set
"Bounded" and "boundary" are distinct concepts; for the latter see boundary (topology). A circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. In mathematical analysis and related areas of mathematics, a set is called bounded, if it is, in a certain sense, of finite size. Conversely, a set which is not bounded is called unbounded. The word bounded makes no sense in a general topological space, without a metric.
more from Wikipedia
Big O notation
In mathematics, big O notation is used to describe the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions. It is a member of a larger family of notations that is called Landau notation, Bachmann–Landau notation, or asymptotic notation. In computer science, big O notation is used to classify algorithms by how they respond (e.g. , in their processing time or working space requirements) to changes in input size.
more from Wikipedia
Linear map
In mathematics, a linear map, linear mapping, linear transformation, or linear operator (in some contexts also called linear function) is a function between two vector spaces that preserves the operations of vector addition and scalar multiplication. As a result, it always maps straight lines to straight lines or 0. The expression "linear operator" is commonly used for linear maps from a vector space to itself.
more from Wikipedia
Diameter
In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints are on the circle. The diameters are the longest chords of the circle. The word "diameter" derives from Greek διάμετρος (diametros), "diagonal of a circle", from δια- (dia-), "across, through" + μέτρον (metron), "a measure"). In more modern usage, the length of a diameter is also called the diameter.
more from Wikipedia
Ackermann function
In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive.
more from Wikipedia
Distance
Distance is a numerical description of how far apart objects are. In physics or everyday discussion, distance may refer to a physical length, or an estimation based on other criteria (e.g. "two counties over"). In mathematics, a distance function or metric is a generalization of the concept of physical distance.
more from Wikipedia