Concepts inSmoothSketch: 3D free-form shapes from complex sketches
Three-dimensional space
Three-dimensional space is a geometric 3-parameters model of the physical universe (without considering time) in which we live. These three dimensions are commonly called length, width, and depth (or height), although any three directions can be chosen, provided that they do not lie in the same plane. In physics and mathematics, a sequence of n numbers can be understood as a location in n-dimensional space. When n = 3, the set of all such locations is called 3-dimensional Euclidean space.
more from Wikipedia
Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f : X ¿ Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances.
more from Wikipedia
Jordan curve theorem
In topology, a Jordan curve is a non-self-intersecting continuous loop in the plane, and another name for a Jordan curve is a simple closed curve. The Jordan curve theorem asserts that every Jordan curve divides the plane into an "interior" region bounded by the curve and an "exterior" region containing all of the nearby and far away exterior points, so that any continuous path connecting a point of one region to a point of the other intersects with that loop somewhere.
more from Wikipedia
Shape
The shape (Old English: gesceap, created thing) of an object located in some space is a geometrical description of the part of that space occupied by the object, as determined by its external boundary ¿ abstracting from location and orientation in space, size, and other properties such as colour, content, and material composition.
more from Wikipedia
Topology
Topology (from the Greek ¿¿¿¿¿, ¿place¿, and ¿¿¿¿¿, ¿study¿) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736.
more from Wikipedia
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R ¿ for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
more from Wikipedia
Solid
Solid is one of the three classical states of matter. It is characterized by structural rigidity and resistance to changes of shape or volume. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire volume available to it like a gas does. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice or irregularly.
more from Wikipedia