Concepts inManifold splines with single extraordinary point
Spline (mathematics)
In mathematics, a spline is a sufficiently smooth polynomial function that is piecewise-defined, and possesses a high degree of smoothness at the places where the polynomial pieces connect (which are known as knots). In interpolating problems, spline interpolation is often referred to as polynomial interpolation because it yields similar results, even when using low-degree polynomials, while avoiding Runge's phenomenon for higher degrees.
more from Wikipedia
Manifold
In mathematics, a manifold is a mathematical object that on a small enough scale resembles Euclidean space. For example, seen from far away, the surface of the planet Earth is not flat and Euclidean, but on a smaller scale, one may describe each region via a geographic map, a projection of the surface onto the Euclidean plane. A precise mathematical definition of a manifold is given below. Lines and circles (but not figure eights) are one-dimensional manifolds (1-manifolds).
more from Wikipedia
Ricci flow
In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process that deforms the metric of a Riemannian manifold in a way formally analogous to the diffusion of heat, smoothing out irregularities in the metric. The Ricci flow was first introduced by Richard Hamilton in 1981, and is also referred to as the Ricci-Hamilton flow.
more from Wikipedia
Riemannian manifold
In Riemannian geometry and the differential geometry of surfaces, a Riemannian manifold or Riemannian space (M,g) is a real differentiable manifold M in which each tangent space is equipped with an inner product g, a Riemannian metric, which varies smoothly from point to point. The terms are named after German mathematician Bernhard Riemann.
more from Wikipedia
Solid modeling
Solid modeling (or modelling) is a consistent set of principles for mathematical and computer modeling of three-dimensional solids. Solid modeling is distinguished from related areas of geometric modeling and computer graphics by its emphasis on physical fidelity.
more from Wikipedia
Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R ¿ for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
more from Wikipedia
Topology
Topology (from the Greek ¿¿¿¿¿, ¿place¿, and ¿¿¿¿¿, ¿study¿) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736.
more from Wikipedia