In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently. Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers.
more from Wikipedia
Disjoint-set data structure
In computing, a disjoint-set data structure is a data structure that keeps track of a set of elements partitioned into a number of disjoint (nonoverlapping) subsets. A union-find algorithm is an algorithm that performs two useful operations on such a data structure: Find: Determine which subset a particular element is in. This can be used for determining if two elements are in the same subset. Union: Join two subsets into a single subset.
more from Wikipedia
Persistent data structure
In computing, a persistent data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure. (A persistent data structure is not a data structure committed to persistent storage, such as a disk; this is a different and unrelated sense of the word "persistent.
more from Wikipedia
Partition of a set
In mathematics, a partition of a set X is a division of X into non-overlapping and non-empty "parts" or "blocks" or "cells" that cover all of X. More formally, these "cells" are both collectively exhaustive and mutually exclusive with respect to the set being partitioned.
more from Wikipedia
Backtracking
Backtracking is a general algorithm for finding all (or some) solutions to some computational problem, that incrementally builds candidates to the solutions, and abandons each partial candidate c ("backtracks") as soon as it determines that c cannot possibly be completed to a valid solution. The classic textbook example of the use of backtracking is the eight queens puzzle, that asks for all arrangements of eight queens on a standard chessboard so that no queen attacks any other.
more from Wikipedia
Disjoint sets
In mathematics, two sets are said to be disjoint if they have no element in common. For example, {1, 2, 3} and {4, 5, 6} are disjoint sets.
more from Wikipedia
Imperative programming
In computer science, imperative programming is a programming paradigm that describes computation in terms of statements that change a program state. In much the same way that imperative mood in natural languages expresses commands to take action, imperative programs define sequences of commands for the computer to perform.
more from Wikipedia
Coq
In computer science, Coq is an interactive theorem prover. It allows the expression of mathematical assertions, mechanically checks proofs of these assertions, helps to find formal proofs, and extracts a certified program from the constructive proof of its formal specification. Coq works within the theory of the calculus of inductive constructions, a derivative of the calculus of constructions.
more from Wikipedia