Concepts inA constraint-based dynamic geometry system
List of interactive geometry software
Interactive geometry software (IGS, or dynamic geometry environments, DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a few points and using them to define new objects such as lines, circles or other points. After some construction is done, one can move the points one started with and see how the construction changes.
more from Wikipedia
Constraint satisfaction
In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution to a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a vector of variables that satisfies all constraints. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
more from Wikipedia
Dynamical system
A dynamical system is a concept in mathematics where a fixed rule describes the time dependence of a point in a geometrical space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, and the number of fish each springtime in a lake. At any given time a dynamical system has a state given by a set of real numbers that can be represented by a point in an appropriate state space.
more from Wikipedia
Fixed point (mathematics)
Not to be confused with a stationary point where f'(x) = 0. In mathematics, a fixed point (sometimes shortened to fixpoint, also known as an invariant point) of a function is a point that is mapped to itself by the function. A set of fixed points is sometimes called a fixed set. That is to say, c is a fixed point of the function f(x) if and only if f(c) = c. For example, if f is defined on the real numbers by then 2 is a fixed point of f, because f(2) = 2.
more from Wikipedia
Functional (mathematics)
In mathematics, and particularly in functional analysis, a functional is a map from a vector space into its underlying scalar field. In other words, it is a function that takes a vector as its input argument, and returns a scalar. Commonly the vector space is a space of functions, thus the functional takes a function for its input argument, then it is sometimes considered a function of a function.
more from Wikipedia
Field (mathematics)
In abstract algebra, a field is a ring whose nonzero elements form a commutative group under multiplication. As such it is an algebraic structure with notions of addition, subtraction, multiplication, and division, satisfying certain axioms. The most commonly used fields are the field of real numbers, the field of complex numbers, and the field of rational numbers, but there are also finite fields, fields of functions, various algebraic number fields, p-adic fields, and so forth.
more from Wikipedia
Modular arithmetic
In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of arithmetic for integers, where numbers "wrap around" after they reach a certain value¿the modulus. The Swiss mathematician Leonhard Euler pioneered the modern approach to congruence in about 1750, when he explicitly introduced the idea of congruence modulo a number N. Modular arithmetic was further advanced by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.
more from Wikipedia
Functional programming
In computer science, functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions, in contrast to the imperative programming style, which emphasizes changes in state. Functional programming has its roots in lambda calculus, a formal system developed in the 1930s to investigate function definition, function application, and recursion.
more from Wikipedia