SMT '08/BPR '08 Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise Reasoning
Concepts inImplementing polymorphism in SMT solvers
Satisfiability Modulo Theories
In computer science and mathematical logic, the Satisfiability Modulo Theories (SMT) problem is a decision problem for logical formulas with respect to combinations of background theories expressed in classical first-order logic with equality. Examples of theories typically used in computer science are the theory of real numbers, the theory of integers, and the theories of various data structures such as lists, arrays, bit vectors and so on.
more from Wikipedia
Parametric polymorphism
In programming languages and type theory, parametric polymorphism is a way to make a language more expressive, while still maintaining full static type-safety. Using parametric polymorphism, a function or a data type can be written generically so that it can handle values identically without depending on their type. Such functions and data types are called generic functions and generic datatypes respectively and form the basis of generic programming.
more from Wikipedia
Unification (computer science)
Unification, in computer science and logic, is an algorithmic process by which one attempts to solve the satisfiability problem. The goal of unification is to find a substitution which demonstrates that two seemingly different terms are in fact either identical or just equal. Unification is widely used in automated reasoning, logic programming and programming language type system implementation.
more from Wikipedia
Type variable
In type theory and programming languages, a type variable is a mathematical variable ranging over types. Even in programming languages that allow mutable variables, a type variable remains an abstraction, in the sense that it does not correspond to some memory locations. Programming languages that support parametric polymorphism make use of universally quantified type variables. Languages that support existential types make use of existentially quantified type variables.
more from Wikipedia
Instance (computer science)
In object-oriented programming an instance is an occurrence or a copy of an object, whether currently executing or not. Instances of a class share the same set of attributes, yet will typically differ in what those attributes contain. For example, a class "Employee" would describe the attributes common to all instances of the Employee class. For the purposes of the task being solved Employee objects may be generally alike, but vary in such attributes as "name" and "salary".
more from Wikipedia