In computational complexity theory, NP is one of the most fundamental complexity classes. The abbreviation NP refers to "nondeterministic polynomial time. " Intuitively, NP is the set of all decision problems for which the instances where the answer is "yes" have efficiently verifiable proofs of the fact that the answer is indeed "yes. " More precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing machine.
more from Wikipedia
P versus NP problem
The P versus NP problem is a major unsolved problem in computer science. Informally, it asks whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer. It was introduced in 1971 by Stephen Cook in his seminal paper "The complexity of theorem proving procedures" and is considered by many to be the most important open problem in the field.
more from Wikipedia
Complexity class
In computational complexity theory, a complexity class is a set of problems of related resource-based complexity. A typical complexity class has a definition of the form: the set of problems that can be solved by an abstract machine M using O(f) of resource R, where n is the size of the input.
more from Wikipedia
NEXPTIME
In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time O(2) for some polynomial p(n), and unlimited space. In terms of NTIME, An important set of NEXPTIME-complete problems relates to succinct circuits. Succinct circuits are simple machines used to describe graphs in exponentially less space.
more from Wikipedia
Axiom
An axiom is a premise or starting point of reasoning. As classically conceived, an axiom is a premise so evident as to be accepted as true without controversy. The word comes from the Greek ἀξίωμα 'that which is thought worthy or fit,' or 'that which commends itself as evident. ' As used in modern logic, an axiom is simply a premise or starting point for reasoning, and equivalent to what Aristotle calls a definition. Axioms define and delimit the realm of analysis.
more from Wikipedia
Bounded-error probabilistic polynomial
In computational complexity theory, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an error probability of at most 1/3 for all instances.
more from Wikipedia
Oracle machine
In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to decide certain decision problems in a single operation. The problem can be of any complexity class. Even undecidable problems, like the halting problem, can be used.
more from Wikipedia
IP (complexity)
In computational complexity theory, the class IP (which stands for Interactive Polynomial time) is the class of problems solvable by an interactive proof system. The concept of an interactive proof system was first introduced by Shafi Goldwasser, Silvio Micali, and Charles Rackoff in 1985.
more from Wikipedia