Concepts inSymmetry factored embedding and distance
Symmetry
Symmetry (from Greek ¿¿¿¿¿¿¿¿¿¿ symmetría "measure together") generally conveys two primary meanings. The first is an imprecise sense of harmonious or aesthetically pleasing proportionality and balance; such that it reflects beauty or perfection. The second meaning is a precise and well-defined concept of balance or "patterned self-similarity" that can be demonstrated or proved according to the rules of a formal system: by geometry, through physics or otherwise.
more from Wikipedia
Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f : X ¿ Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances.
more from Wikipedia
Symmetry group
In abstract algebra, the symmetry group of an object is the group of all isometries under which the object is invariant with composition as the operation. It is a subgroup of the isometry group of the space concerned. If not stated otherwise, this article considers symmetry groups in Euclidean geometry, but the concept may also be studied in wider contexts; see below.
more from Wikipedia
Coordinate system
In geometry, a coordinate system is a system which uses one or more numbers, or coordinates, to uniquely determine the position of a point or other geometric element on a manifold such as Euclidean space. The order of the coordinates is significant and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in 'the x-coordinate'.
more from Wikipedia
Symmetric group
In mathematics, the symmetric group Sn on a finite set of n symbols is the group whose elements are all the permutations of the n symbols, and whose group operation is the composition of such permutations, which are treated as bijective functions from the set of symbols to itself. Since there are n! possible permutations of a set of n symbols, it follows that the order (the number of elements) of the symmetric group Sn is n!.
more from Wikipedia
Euclidean distance
In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" distance between two points that one would measure with a ruler, and is given by the Pythagorean formula. By using this formula as distance, Euclidean space (or even any inner product space) becomes a metric space. The associated norm is called the Euclidean norm. Older literature refers to the metric as Pythagorean metric.
more from Wikipedia
Shape
The shape (Old English: gesceap, created thing) of an object located in some space is a geometrical description of the part of that space occupied by the object, as determined by its external boundary ¿ abstracting from location and orientation in space, size, and other properties such as colour, content, and material composition.
more from Wikipedia