Concepts inComplexity theory for operators in analysis
Computational complexity theory
Computational complexity theory is a branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. In this context, a computational problem is understood to be a task that is in principle amenable to being solved by a computer (which basically means that the problem can be stated by a set of mathematical instructions).
more from Wikipedia
Mathematical analysis
Mathematical analysis, which mathematicians refer to simply as analysis, is a branch of pure mathematics that includes the theories of differentiation, integration and measure, limits, infinite series, and analytic functions. These theories are often studied in the context of real numbers, complex numbers, and real and complex functions. Analysis may be conventionally distinguished from geometry.
more from Wikipedia
Many-one reduction
In computability theory and computational complexity theory, a many-one reduction is a reduction which converts instances of one decision problem into instances of a second decision problem. Reductions are thus used to measure the relative computational difficulty of two problems. Many-one reductions are a special case and stronger form of Turing reductions. With many-one reductions the oracle can be invoked only once at the end and the answer cannot be modified.
more from Wikipedia
Uncountable set
In mathematics, an uncountable set is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.
more from Wikipedia
Real analysis
Real analysis (traditionally, the theory of functions of a real variable) is a branch of mathematical analysis dealing with the set of real numbers and functions of a real variable. In particular, it deals with the analytic properties of real functions and sequences, including convergence and limits of sequences of real numbers, the calculus of the real numbers, and continuity, smoothness and related properties of real-valued functions.
more from Wikipedia
PSPACE
In computational complexity theory, PSPACE is the set of all decision problems which can be solved by a Turing machine using a polynomial amount of space.
more from Wikipedia
Type theory
In mathematics, logic and computer science, type theory is any of several formal systems that can serve as alternatives to naive set theory, or the study of such formalisms in general. In programming language theory, a branch of computer science, type theory can refer to the design, analysis and study of type systems, although some computer scientists limit the term's meaning to the study of abstract formalisms such as typed ¿-calculi.
more from Wikipedia