In linear algebra, a tridiagonal matrix is a matrix that has nonzero elements only in the main diagonal, the first diagonal below this, and the first diagonal above the main diagonal. For example, the following matrix is tridiagonal: The determinant of a tridiagonal matrix is given by a continuant of its elements. Determining an orthogonal transformation to tridiagonal form can be done with the Lanczos algorithm.
more from Wikipedia
Permutation matrix
In mathematics, in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry 1 in each row and each column and 0s elsewhere. Each such matrix represents a specific permutation of m elements and, when used to multiply another matrix, can produce that permutation in the rows or columns of the other matrix.
more from Wikipedia
Pivot element
The pivot or pivot element is the element of a matrix, an array, or some other kind of finite set, which is selected first by an algorithm, to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this element is called pivoting.
more from Wikipedia
Triangular matrix
In the mathematical discipline of linear algebra, a triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Conversely a square matrix is called upper triangular if all the entries below the main diagonal are zero. A triangular matrix is one that is either lower triangular or upper triangular. A matrix that is both upper and lower triangular is a diagonal matrix.
more from Wikipedia
Symmetric matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Let A be a symmetric matrix. Then: The entries of a symmetric matrix are symmetric with respect to the main diagonal (top left to bottom right). So if the entries are written as A = (aij), then for all indices i and j. The following 3×3 matrix is symmetric: Every diagonal matrix is symmetric, since all off-diagonal entries are zero.
more from Wikipedia
Numerical stability
In the mathematical subfield of numerical analysis, numerical stability is a desirable property of numerical algorithms. The precise definition of stability depends on the context, but it is derived from the accuracy of the algorithm. An opposite phenomenon is instability.
more from Wikipedia
Simultaneous equations
In mathematics, simultaneous equations are a set of equations containing multiple variables. This set is often referred to as a system of equations. A solution to a system of equations is a particular specification of the values of all variables that simultaneously satisfies all of the equations. To find a solution, the solver needs to use the provided equations to find the exact value of each variable.
more from Wikipedia