In mathematics and abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have strongly influenced many parts of algebra.
more from Wikipedia
Discrete logarithm
In mathematics, specifically in abstract algebra and its applications, discrete logarithms are group-theoretic analogues of ordinary logarithms. In particular, an ordinary logarithm loga(b) is a solution of the equation a = b over the real or complex numbers. Similarly, if g and h are elements of a finite cyclic group G then a solution x of the equation g = h is called a discrete logarithm to the base g of h in the group G.
more from Wikipedia
NP (complexity)
In computational complexity theory, NP is one of the most fundamental complexity classes. The abbreviation NP refers to "nondeterministic polynomial time. " Intuitively, NP is the set of all decision problems for which the instances where the answer is "yes" have efficiently verifiable proofs of the fact that the answer is indeed "yes. " More precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing machine.
more from Wikipedia
Order (group theory)
In group theory, a branch of mathematics, the term order is used in two closely related senses: The order of a group is its cardinality, i.e. , the number of elements in its set. The order, sometimes period, of an element a of a group is the smallest positive integer m such that a = e (where e denotes the identity element of the group, and a denotes the product of m copies of a). If no such m exists, a is said to have infinite order. All elements of finite groups have finite order.
more from Wikipedia
Group (mathematics)
In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy four conditions called the group axioms, namely closure, associativity, identity and invertibility. Many familiar mathematical structures such as number systems obey these axioms: for example, the integers endowed with the addition operation form a group.
more from Wikipedia
Prime number
A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is called a composite number. For example, 5 is prime, as only 1 and 5 divide it, whereas 6 is composite, since it has the divisors 2 and 3 in addition to 1 and 6.
more from Wikipedia
Finite group
In mathematics and abstract algebra, a finite group is a group whose underlying set G has finitely many elements. During the twentieth century, mathematicians investigated certain aspects of the theory of finite groups in great depth, especially the local theory of finite groups, and the theory of solvable groups and nilpotent groups. A complete determination of the structure of all finite groups is too much to hope for; the number of possible structures soon becomes overwhelming.
more from Wikipedia
List of finite simple groups
In mathematics, the classification of finite simple groups states that every finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type (including the Tits group, which strictly speaking is not of Lie type), or one of 26 sporadic groups. The list below gives all finite simple groups, together with their order, the size of the Schur multiplier, the size of the outer automorphism group, usually some small representations, and lists of all duplicates.
more from Wikipedia