Concepts inOn the existence of extractable one-way functions
One-way function
In computer science, a one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input. Here "easy" and "hard" are to be understood in the sense of computational complexity theory, specifically the theory of polynomial time problems. Not being one-to-one is not considered sufficient of a function for it to be called one-way (see Theoretical Definition, below). The existence of such one-way functions is still an open conjecture.
more from Wikipedia
Image (mathematics)
In mathematics, an image is the subset of a function's codomain which is the output of the function on a subset of its domain. Precisely, evaluating the function at each element of a subset X of the domain produces a set called the image of X under or through the function. The inverse image or preimage of a particular subset S of the codomain of a function is the set of all elements of the domain that map to the members of S.
more from Wikipedia
Zero-knowledge proof
In cryptography, a zero-knowledge proof or zero-knowledge protocol is an interactive method for one party to prove to another that a (usually mathematical) statement is true, without revealing anything other than the veracity of the statement.
more from Wikipedia
Function (mathematics)
In mathematics, a function is a relation between a set of inputs and a set of potential outputs with the property that each input is related to exactly one output. An example of such a relation is defined by the rule f(x) = x, which relates an input x to its square, which are both real numbers. The output of the function f corresponding to an input x is denoted by f(x) (read "f of x"). If the input is –3, then the output is 9, and we may write f(–3) = 9.
more from Wikipedia
Polynomial
In mathematics, a polynomial is an expression of finite length constructed from variables and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents. For example, x − x/4 + 7 is a polynomial, but x − 4/x + 7x is not, because its second term involves division by the variable x (4/x), and also because its third term contains an exponent that is not an integer (3/2).
more from Wikipedia
Bounded set
"Bounded" and "boundary" are distinct concepts; for the latter see boundary (topology). A circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. In mathematical analysis and related areas of mathematics, a set is called bounded, if it is, in a certain sense, of finite size. Conversely, a set which is not bounded is called unbounded. The word bounded makes no sense in a general topological space, without a metric.
more from Wikipedia
Algorithm
In mathematics and computer science, an algorithm Listen/ˈælɡərɪðəm/ (originating from al-Khwārizmī, the famous mathematician Muḥammad ibn Mūsā al-Khwārizmī) is a step-by-step procedure for calculations. Algorithms are used for calculation, data processing, and automated reasoning. More precisely, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function.
more from Wikipedia