In mathematics, a partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives. PDEs are used to formulate problems involving functions of several variables, and are either solved by hand, or used to create a relevant computer model. PDEs can be used to describe a wide variety of phenomena such as sound, heat, electrostatics, electrodynamics, fluid flow, or elasticity.
more from Wikipedia
Hyperbolic partial differential equation
In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n−1 derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest.
more from Wikipedia
Nonlinear system
This article describes the use of the term nonlinearity in mathematics. For other meanings, see nonlinearity (disambiguation). 50x40px This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations.
more from Wikipedia
Discretization
In mathematics, discretization concerns the process of transferring continuous models and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical evaluation and implementation on digital computers. In order to be processed on a digital computer another process named quantization is essential.
more from Wikipedia
Integral
Integration is an important concept in mathematics and, together with its inverse, differentiation, is one of the two main operations in calculus. Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral is defined informally to be the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b, such that areas above the axis add to the total, and the area below the x axis subtract from the total.
more from Wikipedia
Equation
An equation is a mathematical statement that asserts the equality of two expressions. In modern notation, this is written by placing the expressions on either side of an equals sign (=), for example asserts that x+3 is equal to 5. The = symbol was invented by Robert Recorde (1510�), who considered that nothing could be more equal than parallel straight lines with the same length.
more from Wikipedia
Elliptic operator
In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions. Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics.
more from Wikipedia
Parabolic partial differential equation
A parabolic partial differential equation is a type of second-order partial differential equation (PDE), describing a wide family of problems in science including heat diffusion, ocean acoustic propagation, in physical or mathematical systems with a time variable, and which behave essentially like heat diffusing through a solid. A partial differential equation of the form is parabolic if it satisfies the condition This definition is analogous to the definition of a planar parabola.
more from Wikipedia