Concepts inSteiner points in tree metrics don't (really) help
Steiner tree problem
The Steiner tree problem, or the minimum Steiner tree problem, named after Jakob Steiner, is a problem in combinatorial optimization, which may be formulated in a number of settings, with the common part being that it is required to find the shortest interconnect for a given set of objects.
more from Wikipedia
Tree (graph theory)
In mathematics, more specifically graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without cycles is a tree. A forest is a disjoint union of trees. The various kinds of data structures referred to as trees in computer science are equivalent to trees in graph theory, although such data structures are commonly rooted trees, and may have additional ordering of branches.
more from Wikipedia
Combinatorial proof
In mathematics, the term combinatorial proof is often used to mean either of two types of proof of an identity in enumerative combinatorics that either states that two sets of combinatorial configurations, depending on one or more parameters, have the same number of elements (for all values of the parameters), or gives a formula for the number of one such set of configurations in terms of the parameters: A bijective proof, which exhibits a bijection, i.e.
more from Wikipedia
E
Not to be confused with ¿ or ¿. For, E# redirects here. For the musical note, see E¿ (musical note). For the mathematical constant, see e (mathematical constant). For other uses, see E (disambiguation). E ISO basic Latin alphabet Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk Ll Mm Nn Oo Pp Qq Rr Ss Tt Uu Vv Ww Xx Yy Zz E is a vowel and the fifth letter in the ISO basic Latin alphabet.
more from Wikipedia
Generating set of a group
In abstract algebra, a generating set of a group is a subset that is not contained in any proper subgroup of the group. Equivalently, a generating set of a group is a subset such that every element of the group can be expressed as the combination (under the group operation) of finitely many elements of the subset and their inverses.
more from Wikipedia
Girth (graph theory)
In graph theory, the girth of a graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles (i.e. it's an acyclic graph), its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free.
more from Wikipedia
Asterisk
An asterisk is a typographical symbol or glyph. It is so called because it resembles a conventional image of a star. Computer scientists and mathematicians often pronounce it as star (as, for example, in the A* search algorithm or C*-algebra). In English, an asterisk is usually five-pointed in sans-serif typefaces, six-pointed in serif typefaces, and six- or eight-pointed when handwritten. It can be used to censor vulgar words or objectionable text.
more from Wikipedia
Metric space
In mathematics, a metric space is a set where a notion of distance between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3-dimensional Euclidean space. In fact, the notion of "metric" is a generalization of the Euclidean metric arising from the four long-known properties of the Euclidean distance.
more from Wikipedia