Concepts inAn introduction to quantum computing for non-physicists
Quantum computer
A quantum computer is a device for computation that makes direct use of quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. Quantum computers are different from digital computers based on transistors. Whereas digital computers require data to be encoded into binary digits, quantum computation utilizes quantum properties to represent data and perform operations on these data.
more from Wikipedia
Peter Shor
Peter Williston Shor (born August 14, 1959) is an American professor of applied mathematics at MIT, most famous for his work on quantum computation, in particular for devising Shor's algorithm, a quantum algorithm for factoring exponentially faster than the best currently-known algorithm running on a classical computer.
more from Wikipedia
Richard Feynman
Richard Phillips Feynman was an American physicist known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, and the physics of the superfluidity of supercooled liquid helium, as well as in particle physics (he proposed the parton model). For his contributions to the development of quantum electrodynamics, Feynman, jointly with Julian Schwinger and Sin-Itiro Tomonaga, received the Nobel Prize in Physics in 1965.
more from Wikipedia
Mathematical formulation of quantum mechanics
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. Such are distinguished from mathematical formalisms for theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces and operators on these spaces.
more from Wikipedia
Quantum cryptography
Quantum cryptography describes the use of quantum mechanical effects (in particular quantum communication and quantum computation) to perform cryptographic tasks or to break cryptographic systems. The use of classical (i.e. , non-quantum) cryptography to protect against quantum attackers is also often considered as quantum cryptography (in this case, one also speaks of post-quantum cryptography).
more from Wikipedia
Quantum error correction
Quantum error correction is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is essential if one is to achieve fault-tolerant quantum computation that can deal not only with noise on stored quantum information, but also with faulty quantum gates, faulty quantum preparation, and faulty measurements. Classical error correction employs redundancy.
more from Wikipedia
Quantum algorithm
In quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer.
more from Wikipedia
Integer factorization
In number theory, integer factorization or prime factorization is the decomposition of a composite number into smaller non-trivial divisors, which when multiplied together equal the original integer. When the numbers are very large, no efficient, non-quantum integer factorization algorithm is known; an effort concluded in 2009 by several researchers factored a 232-digit number, utilizing hundreds of machines over a span of 2 years.
more from Wikipedia