Concepts inTowards approximations which preserve integrals
Ordinary differential equation
In mathematics, an ordinary differential equation (abbreviated ODE) is an equation containing a function of one independent variable and its derivatives. There are many general forms an ODE can take, and these are classified in practice (see below). The derivatives are ordinary because partial derivatives only apply to functions of many independent variables.
more from Wikipedia
Noether's theorem
Noether's (first) theorem states that any differentiable symmetry of the action of a physical system has a corresponding conservation law. The theorem was proved by German mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function (which may or may not be an integral over space of a Lagrangian density function), from which the system's behavior can be determined by the principle of least action.
more from Wikipedia
Conservation law
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves. One particularly important physical result concerning conservation laws is Noether's Theorem, which states that there is a one-to-one correspondence between conservation laws and differentiable symmetries of physical systems.
more from Wikipedia
Calculus of variations
Calculus of variations is a field of mathematics, or more specifically calculus, that deals with maximizing or minimizing functionals, which are mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. The interest is in extremal functions that make the functional attain a maximum or minimum value – or stationary functions – those where the rate of change of the functional is zero.
more from Wikipedia
Symmetry
Symmetry (from Greek συμμετρεῖν symmetría "measure together") generally conveys two primary meanings. The first is an imprecise sense of harmonious or aesthetically pleasing proportionality and balance; such that it reflects beauty or perfection. The second meaning is a precise and well-defined concept of balance or "patterned self-similarity" that can be demonstrated or proved according to the rules of a formal system: by geometry, through physics or otherwise.
more from Wikipedia
Integral
Integration is an important concept in mathematics and, together with its inverse, differentiation, is one of the two main operations in calculus. Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral is defined informally to be the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b, such that areas above the axis add to the total, and the area below the x axis subtract from the total.
more from Wikipedia
Variational principle
A variational principle is a scientific principle used within the calculus of variations, which develops general methods for finding functions which minimize or maximize the value of quantities that depend upon those functions. For example, to answer this question: "What is the shape of a chain suspended at both ends?" we can use the variational principle that the shape must minimize the gravitational potential energy.
more from Wikipedia
Finite difference method
In mathematics, finite-difference methods are numerical methods for approximating the solutions to differential equations using finite difference equations to approximate derivatives.
more from Wikipedia