In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions, and with quantitatively characterizing the errors introduced thereby. Note that what is meant by best and simpler will depend on the application. A closely related topic is the approximation of functions by generalized Fourier series, that is, approximations based upon summation of a series of terms based upon orthogonal polynomials.
more from Wikipedia
Iterative method
In computational mathematics, an iterative method is a mathematical procedure that generates a sequence of improving approximate solutions for a class of problems. A specific implementation of an iterative method, including the termination criteria, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations.
more from Wikipedia
Signal processing
Signal processing is an area of systems engineering, electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time. Signals of interest can include sound, images, time-varying measurement values and sensor data, for example biological data such as electrocardiograms, control system signals, telecommunication transmission signals, and many others.
more from Wikipedia
Pafnuty Chebyshev
Pafnuty Lvovich Chebyshev (May 16 � – December 8 �) was a Russian mathematician. His name can be alternatively transliterated as Chebychev (English translitteration), Chebysheff (English), Chebyshov (English), Tchebychev (French) or Tchebycheff (French), or Tschebyschev (German) or Tschebyscheff (German) or Tschebyschow (German).
more from Wikipedia
Approximation
An approximation is a representation of something that is not exact, but still close enough to be useful. Although approximation is most often applied to numbers, it is also frequently applied to such things as mathematical functions, shapes, and physical laws. Approximations may be used because incomplete information prevents use of exact representations. Many problems in physics are either too complex to solve analytically, or impossible to solve using the available analytical tools.
more from Wikipedia
Algorithm
In mathematics and computer science, an algorithm Listen/ˈælɡərɪðəm/ (originating from al-Khwārizmī, the famous mathematician Muḥammad ibn Mūsā al-Khwārizmī) is a step-by-step procedure for calculations. Algorithms are used for calculation, data processing, and automated reasoning. More precisely, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function.
more from Wikipedia
Continuous function
In mathematics, a continuous function is a function for which, intuitively, "small" changes in the input result in "small" changes in the output. Otherwise, a function is said to be "discontinuous". A continuous function with a continuous inverse function is called "bicontinuous". Continuity of functions is one of the core concepts of topology, which is treated in full generality below.
more from Wikipedia
Collocation method
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually, polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the given equation at the collocation points.
more from Wikipedia