Concepts inRiemann's Hypothesis and tests for primality
Generalized Riemann hypothesis
The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis.
more from Wikipedia
Integer factorization
In number theory, integer factorization or prime factorization is the decomposition of a composite number into smaller non-trivial divisors, which when multiplied together equal the original integer. When the numbers are very large, no efficient, non-quantum integer factorization algorithm is known; an effort concluded in 2009 by several researchers factored a 232-digit number, utilizing hundreds of machines over a span of 2 years.
more from Wikipedia
Euler's totient function
In number theory, Euler's totient or phi function, φ(n) is an arithmetic function that counts the number of positive integers less than or equal to n that are relatively prime to n. That is, if n is a positive integer, then φ(n) is the number of integers k in the range 1 ≤ k ≤ n for which gcd(n, k) = 1. The totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime (to each other), then φ(mn) = φ(m)φ(n). For example let n = 9.
more from Wikipedia
Computational complexity theory
Computational complexity theory is a branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. In this context, a computational problem is understood to be a task that is in principle amenable to being solved by a computer (which basically means that the problem can be stated by a set of mathematical instructions).
more from Wikipedia
Prime number
A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is called a composite number. For example, 5 is prime, as only 1 and 5 divide it, whereas 6 is composite, since it has the divisors 2 and 3 in addition to 1 and 6.
more from Wikipedia
Binary numeral system
The binary numeral system, or base-2 number system, represents numeric values using two symbols: 0 and 1. More specifically, the usual base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers.
more from Wikipedia
Upper and lower bounds
In mathematics, especially in order theory, an upper bound of a subset S of some partially ordered set (P, ≤) is an element of P which is greater than or equal to every element of S. The term lower bound is defined dually as an element of P which is less than or equal to every element of S. A set with an upper bound is said to be bounded from above by that bound, a set with a lower bound is said to be bounded from below by that bound.
more from Wikipedia
Polynomial
In mathematics, a polynomial is an expression of finite length constructed from variables and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents. For example, x − x/4 + 7 is a polynomial, but x − 4/x + 7x is not, because its second term involves division by the variable x (4/x), and also because its third term contains an exponent that is not an integer (3/2).
more from Wikipedia