Concepts inParallel frontal solvers for large sparse linear systems
Solver
A solver is a generic term indicating a piece of mathematical software, possibly in the form of a stand-alone computer program or as a software library, that 'solves' a mathematical problem. A solver takes problem descriptions in some sort of generic form and calculate their solution. In a solver, the emphasis is on creating a program or library that can easily be applied to other problems of similar type.
more from Wikipedia
Parallel computing
Parallel computing is a form of computation in which many calculations are carried out simultaneously, operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently ("in parallel"). There are several different forms of parallel computing: bit-level, instruction level, data, and task parallelism.
more from Wikipedia
Mathematical software
Mathematical software is software used to model, analyze or calculate numeric, symbolic or geometric data.
more from Wikipedia
Sparse matrix
In the subfield of numerical analysis, a sparse matrix is a matrix populated primarily with zeros. The term itself was coined by Harry M. Markowitz. Conceptually, sparsity corresponds to systems which are loosely coupled. Consider a line of balls connected by springs from one to the next; this is a sparse system. By contrast, if the same line of balls had springs connecting each ball to all other balls, the system would be represented by a dense matrix.
more from Wikipedia
Positive-definite matrix
In linear algebra, a positive-definite matrix is a matrix that in many ways is analogous to a positive real number. The notion is closely related to a positive-definite symmetric bilinear form (or a sesquilinear form in the complex case). The proper definition of positive-definite is unambiguous for Hermitian matrices, but there is no agreement in the literature on how this should be extended for non-Hermitian matrices, if at all. (See the section Non-Hermitian matrices below.)
more from Wikipedia
Finite element method
The finite element method (FEM) (its practical application often known as finite element analysis) is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as integral equations.
more from Wikipedia
Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). One of the earliest mathematical writings is a Babylonian tablet from the Yale Babylonian Collection(YBC 7289), which gives a sexagesimal numerical approximation of, the length of the diagonal in a unit square.
more from Wikipedia