Concepts inUnivariate power series expansions in REDUCE
Power series
In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the nth term, c is a constant, and x varies around c (for this reason one sometimes speaks of the series as being centered at c). This series usually arises as the Taylor series of some known function; the Taylor series article contains many examples. In many situations c is equal to zero, for instance when considering a Maclaurin series.
more from Wikipedia
Univariate
In mathematics, univariate refers to an expression, equation, function or polynomial of only one variable. Objects of any of these types but involving more than one variable may be called multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for instance the study of roots of a polynomial only has a meaning in the univariate case.
more from Wikipedia
Formal power series
In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established.
more from Wikipedia
Operation (mathematics)
The general operation as explained on this page should not be confused with the more specific operators on vector spaces. For a notion in elementary mathematics, see arithmetic operation. In its simplest meaning in mathematics and logic, an operation is an action or procedure which produces a new value from one or more input values. There are two common types of operations: unary and binary. Unary operations involve only one value, such as negation and trigonometric functions.
more from Wikipedia
Algebraic structure
In mathematics, and more specifically abstract algebra, the term algebraic structure generally refers to an arbitrary set with one or more finitary operations defined on it. Common examples of structures include groups, rings, fields and lattices. More complex algebraic structures can be defined by introducing multiple operations, different underlying sets, or by altering the defining axioms. Examples of more complex structures include vector spaces, modules and algebras.
more from Wikipedia
Infinity
Infinity refers to something without any limit, and is a concept relevant in a number of fields, predominantly mathematics and physics. Having a recognizable history in these disciplines reaching back into the time of ancient Greek civilization, the term in the English language derives from Latin infinitas, which is translated as "unboundedness". In mathematics, "infinity" is often treated as if it were a number but it is not the same sort of number as the real numbers.
more from Wikipedia
Integral
Integration is an important concept in mathematics and, together with its inverse, differentiation, is one of the two main operations in calculus. Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral is defined informally to be the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b, such that areas above the axis add to the total, and the area below the x axis subtract from the total.
more from Wikipedia
Data structure
In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently. Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers.
more from Wikipedia