Concepts inAn O(n2log n) time algorithm for the MinMax angle triangulation
Point (geometry)
In geometry, topology, and related branches of mathematics, a spatial point is a primitive notion upon which other concepts may be defined. In geometry, points are zero-dimensional; i.e. , they do not have volume, area, length, or any other higher-dimensional analogue. In branches of mathematics dealing with set theory, an element is sometimes referred to as a point.
more from Wikipedia
Angle
In geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles are usually presumed to be in a Euclidean plane, but are also defined in non-Euclidean geometry. Angle is also used to designate the measure of an angle or of a rotation. This measure is the ratio of the length of a circular arc by its radius. In the case of an angle (figure), the arc is centered at the vertex and delimited by the sides.
more from Wikipedia
Plane (geometry)
In mathematics, a plane is a flat, two-dimensional surface. A plane is the two dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a space (three-dimensions). Planes can arise as subspaces of some higher dimensional space, as with the walls of a room, or they may enjoy an independent existence in their own right, as in the setting of Euclidean geometry.
more from Wikipedia
Set (mathematics)
A set is a collection of well defined and distinct objects, considered as an object in its own right. Sets are one of the most fundamental concepts in mathematics. Developed at the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived.
more from Wikipedia
Euclidean space
In mathematics, Euclidean space is the Euclidean plane and three-dimensional space of Euclidean geometry, as well as the generalizations of these notions to higher dimensions. The term “Euclidean” distinguishes these spaces from the curved spaces of non-Euclidean geometry and Einstein's general theory of relativity, and is named for the Greek mathematician Euclid of Alexandria.
more from Wikipedia
Big O notation
In mathematics, big O notation is used to describe the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions. It is a member of a larger family of notations that is called Landau notation, Bachmann–Landau notation, or asymptotic notation. In computer science, big O notation is used to classify algorithms by how they respond (e.g. , in their processing time or working space requirements) to changes in input size.
more from Wikipedia
Iterative method
In computational mathematics, an iterative method is a mathematical procedure that generates a sequence of improving approximate solutions for a class of problems. A specific implementation of an iterative method, including the termination criteria, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations.
more from Wikipedia
Algorithm
In mathematics and computer science, an algorithm Listen/ˈælɡərɪðəm/ (originating from al-Khwārizmī, the famous mathematician Muḥammad ibn Mūsā al-Khwārizmī) is a step-by-step procedure for calculations. Algorithms are used for calculation, data processing, and automated reasoning. More precisely, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function.
more from Wikipedia