Abstract
In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are underresolved. This is often the case for flows undergoing stretching and tearing. The overall method maintains a smooth geometrical description of the interface and the implementation simplicity characteristic of the level set method. Our method compares favorably with volume of fluid methods in the conservation of mass and purely Lagrangian schemes for interface resolution. The method is presented in three spatial dimensions.
- 1. D. Adalsteinsson and J. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys.118, 269 (1995).]] Google Scholar
Digital Library
- 2. A. Amsden, Numerical Calculation of Surface Waves: A Modified ZUNI Code with Surface Particles and Partial Cells, Technical Report LA-5146 (Los Alamos Scientific Laboratory, Los Alamos, NM, 1973).]]Google Scholar
Cross Ref
- 3. J. Bell, P. Colella, and H. Glaz, A second-order projection method for the incompressible Navier--Stokes equations, J. Comput. Phys.85, 257 (1989).]]Google Scholar
Cross Ref
- 4. R. Caiden, R. Fedkiw, and C. Anderson, A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys.166, 1 (2001).]] Google Scholar
Digital Library
- 5. G. Cerne, S. Petelin, and I. Tiselj, Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow, J. Comput. Phys.171, 776 (2001).]] Google Scholar
Digital Library
- 6. S. Chen, D. Johnson, and P. Raad, Velocity boundary conditions for the simulation of free surface fluid flow, J. Comput. Phys.116, 262 (1995).]] Google Scholar
Digital Library
- 7. S. Chen, D. Johnson, P. Raad, and D. Fadda. The surface marker and micro cell method. Int. J. Numer. Meth. Fluids25, 749 (1997).]]Google Scholar
- 8. D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces, in SIGGRAPH'02 (in press).]] Google Scholar
- 9. N. Foster and R. Fedkiw, Practical animation of liquids, in SIGGRAPH 01 (2001), p. 15.]] Google Scholar
- 10. A. Glassner, Principles of Digital Image Synthesis (Morgan Kaufmann San Francisco. CA. 1995).]] Google Scholar
- 11. F. Harlow, J. Shannon, and J. Welch, THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, Technical Report LA-3425 (Los Alamos Scientific Laboratory, Los Alamos, NM, 1965).]]Google Scholar
- 12. F. Harlow and J. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids8, 2182 (1965).]]Google Scholar
Cross Ref
- 13. J. Helmsen, A Comparison of Three-Dimensional Photolithography Development Methods, Ph.D. thesis (U.C. Berkeley, Berkeley, CA, 1994).]] Google Scholar
- 14. C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.39, 201 (1981).]]Google Scholar
- 15. G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput.21, 2126 (2000).]] Google Scholar
Digital Library
- 16. M. Kang, R. Fedkiw, and X.-D. Liu, A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput.15, 323 (2000).]] Google Scholar
Digital Library
- 17. B. Lafaurie. C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys.113, 134 (1994).]] Google Scholar
Digital Library
- 18. G. Lapenta and J. Brackbill, Dynamic and selective control of the number of particles in kinetic plama simulations, J. Comput. Phys.115, 213 (1994).]] Google Scholar
Digital Library
- 19. R. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal.33, 627 (1996).]] Google Scholar
Digital Library
- 20. S. Osher and R. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys.169, 463 (2001).]] Google Scholar
Digital Library
- 21. S. Osher and R. Fedkiw, The Level Set Method and Dynamic Implicit Surfaces (Springer-Verlag, New York. 2002).]]Google Scholar
- 22. S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamiliton-Jacobi formulations, J. Comput. Phys.79, 12 (1988).]] Google Scholar
Digital Library
- 23. D. Peng, B. Merriman, S. Osher. H.-K. Zhao. and M. Kang, A PDE-based fast local level set method, J. Comput. Phys.155, 410 (1999).]] Google Scholar
Digital Library
- 24. E. Puckett, A. Almgren. J. Bell, D. Marcus, and W. Rider, A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys.130. 269 (1997).]] Google Scholar
Digital Library
- 25. P. Raad, S. Chen, and D. Johnson, The introduction of micro cells to treat pressure in free surface fluid flow problems, J. Fluids Eng.117, 683 (1995).]]Google Scholar
Cross Ref
- 26. W. Rider and D. Kothe, A marker particle method for interface tracking, in Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, edited by H. Dwyer (1995) p. 976.]]Google Scholar
- 27. W. Rider and D. Kothe, Stretching and tearing interface tracking methods, in 12th AIAA CFD Conference, AIAA 95-1717 (1995).]]Google Scholar
Cross Ref
- 28. W. Rider and D. Kothe, Reconstructing volume tracking, J. Comput. Phys.141, 112 (1998).]] Google Scholar
- 29. J. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys.101, 487 (1985).]]Google Scholar
Cross Ref
- 30. J. Sethian, Numerical methods for propagating fronts, in Variational Methods for Free Surface Interfaces, edited by P. Concus and R. Finn (Springer-Verlag, Berlin/New York, 1987).]]Google Scholar
- 31. J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci.93, 1591 (1996).]]Google Scholar
Cross Ref
- 32. J. Sethian, Fast marching methods, SIAM Rev.41, 199 (1999).]] Google Scholar
Digital Library
- 33. J. Sethian, Level Set Methods and Fast Marching Methods (Cambridge Univ. Press, Cambridge, UK, 1999).]]Google Scholar
- 34. J. Sethian, Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. Comput. Phys.169, 503 (2001).]] Google Scholar
Digital Library
- 35. C. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock capturing schemes, J. Comput. Phys.77, 439 (1988).]] Google Scholar
Digital Library
- 36. P. Smolarkiewicz, The multi-dimensional Crowley advection scheme, Month. Weather Rev.110, 1968 (1982).]]Google Scholar
Cross Ref
- 37. M. Sussmam and E. Puckett, A. coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys.162, 301 (2000).]] Google Scholar
- 38. M. Sussman, A. Almgren, J. Bell, P. Colella, L. Howell, and M. Welcome. An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys.148, 81 (1999).]] Google Scholar
Digital Library
- 39. M. Sussman and E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput.20, 1165 (1999).]] Google Scholar
Digital Library
- 40. M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An improved level set method for incompressible two-phase flows, Comput. Fluids27, 663 (1998).]]Google Scholar
- 41. M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys.114, 146 (1994).]] Google Scholar
Digital Library
- 42. D. Torres and J. Brackbill, The point-set method: Front tracking without connectivity, J. Comput. Phys.165, 620 (2000).]] Google Scholar
- 43. G. Tryggvason, B. Bunner. A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys.169, 708 (2001).]] Google Scholar
Digital Library
- 44. S.-O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys.100, 25 (1992).]] Google Scholar
Digital Library
- 45. M. Williams, D. Kothe, and E. Puckett, Approximating interfacial topologies with applications for interface tracking algorithms, in 37th AIAA Aerospace Sciences Meeting, AIAA 99-1076 (1999).]]Google Scholar
Cross Ref
- 46. M. Williams, D. Kothe, and E. Puckett, Convergence and accuracy of kernal-based continuum surface tension models, in Fluid Dynamics at Interfaces, edited by W. Shyy (Cambridge Univ. Press, Cambridge, UK, 1999), p. 347.]]Google Scholar
- 47. S. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys.31, 335 (1979).]]Google Scholar
Cross Ref
- 48. Y. Zhang, K. Yeo, B. Khoo, and C. Wang, 3D jet impact and turoidal bubbles, J. Comput. Phys.166, 336 (2001).]] Google Scholar
Index Terms
A hybrid particle level set method for improved interface capturing
Recommendations
Sharp interface immersed-boundary/level-set method for wave-body interactions
A sharp interface Cartesian grid method for the large-eddy simulation of two-phase turbulent flows interacting with moving bodies is presented. The overall approach uses a sharp interface immersed boundary formulation and a level-set/ghost-fluid method ...
Development of a dispersively accurate conservative level set scheme for capturing interface in two-phase flows
A two-step interface capturing scheme, implemented within the framework of conservative level set method, is developed in this study to simulate the gas/water two-phase fluid flow. In addition to solving the pure advection equation, which is used to ...
A particle-particle hybrid method for kinetic and continuum equations
We present a coupling procedure for two different types of particle methods for the Boltzmann and the Navier-Stokes equations. A variant of the DSMC method is applied to simulate the Boltzmann equation, whereas a meshfree Lagrangian particle method, ...




Comments