skip to main content
article

A hybrid particle level set method for improved interface capturing

Authors Info & Claims
Published:20 November 2002Publication History
Skip Abstract Section

Abstract

In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are underresolved. This is often the case for flows undergoing stretching and tearing. The overall method maintains a smooth geometrical description of the interface and the implementation simplicity characteristic of the level set method. Our method compares favorably with volume of fluid methods in the conservation of mass and purely Lagrangian schemes for interface resolution. The method is presented in three spatial dimensions.

References

  1. 1. D. Adalsteinsson and J. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys.118, 269 (1995).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. 2. A. Amsden, Numerical Calculation of Surface Waves: A Modified ZUNI Code with Surface Particles and Partial Cells, Technical Report LA-5146 (Los Alamos Scientific Laboratory, Los Alamos, NM, 1973).]]Google ScholarGoogle ScholarCross RefCross Ref
  3. 3. J. Bell, P. Colella, and H. Glaz, A second-order projection method for the incompressible Navier--Stokes equations, J. Comput. Phys.85, 257 (1989).]]Google ScholarGoogle ScholarCross RefCross Ref
  4. 4. R. Caiden, R. Fedkiw, and C. Anderson, A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys.166, 1 (2001).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. 5. G. Cerne, S. Petelin, and I. Tiselj, Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow, J. Comput. Phys.171, 776 (2001).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 6. S. Chen, D. Johnson, and P. Raad, Velocity boundary conditions for the simulation of free surface fluid flow, J. Comput. Phys.116, 262 (1995).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. 7. S. Chen, D. Johnson, P. Raad, and D. Fadda. The surface marker and micro cell method. Int. J. Numer. Meth. Fluids25, 749 (1997).]]Google ScholarGoogle Scholar
  8. 8. D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces, in SIGGRAPH'02 (in press).]] Google ScholarGoogle Scholar
  9. 9. N. Foster and R. Fedkiw, Practical animation of liquids, in SIGGRAPH 01 (2001), p. 15.]] Google ScholarGoogle Scholar
  10. 10. A. Glassner, Principles of Digital Image Synthesis (Morgan Kaufmann San Francisco. CA. 1995).]] Google ScholarGoogle Scholar
  11. 11. F. Harlow, J. Shannon, and J. Welch, THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, Technical Report LA-3425 (Los Alamos Scientific Laboratory, Los Alamos, NM, 1965).]]Google ScholarGoogle Scholar
  12. 12. F. Harlow and J. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids8, 2182 (1965).]]Google ScholarGoogle ScholarCross RefCross Ref
  13. 13. J. Helmsen, A Comparison of Three-Dimensional Photolithography Development Methods, Ph.D. thesis (U.C. Berkeley, Berkeley, CA, 1994).]] Google ScholarGoogle Scholar
  14. 14. C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.39, 201 (1981).]]Google ScholarGoogle Scholar
  15. 15. G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput.21, 2126 (2000).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. 16. M. Kang, R. Fedkiw, and X.-D. Liu, A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput.15, 323 (2000).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17. B. Lafaurie. C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys.113, 134 (1994).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. 18. G. Lapenta and J. Brackbill, Dynamic and selective control of the number of particles in kinetic plama simulations, J. Comput. Phys.115, 213 (1994).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. 19. R. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal.33, 627 (1996).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20. S. Osher and R. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys.169, 463 (2001).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21. S. Osher and R. Fedkiw, The Level Set Method and Dynamic Implicit Surfaces (Springer-Verlag, New York. 2002).]]Google ScholarGoogle Scholar
  22. 22. S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamiliton-Jacobi formulations, J. Comput. Phys.79, 12 (1988).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. 23. D. Peng, B. Merriman, S. Osher. H.-K. Zhao. and M. Kang, A PDE-based fast local level set method, J. Comput. Phys.155, 410 (1999).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. 24. E. Puckett, A. Almgren. J. Bell, D. Marcus, and W. Rider, A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys.130. 269 (1997).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25. P. Raad, S. Chen, and D. Johnson, The introduction of micro cells to treat pressure in free surface fluid flow problems, J. Fluids Eng.117, 683 (1995).]]Google ScholarGoogle ScholarCross RefCross Ref
  26. 26. W. Rider and D. Kothe, A marker particle method for interface tracking, in Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, edited by H. Dwyer (1995) p. 976.]]Google ScholarGoogle Scholar
  27. 27. W. Rider and D. Kothe, Stretching and tearing interface tracking methods, in 12th AIAA CFD Conference, AIAA 95-1717 (1995).]]Google ScholarGoogle ScholarCross RefCross Ref
  28. 28. W. Rider and D. Kothe, Reconstructing volume tracking, J. Comput. Phys.141, 112 (1998).]] Google ScholarGoogle Scholar
  29. 29. J. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys.101, 487 (1985).]]Google ScholarGoogle ScholarCross RefCross Ref
  30. 30. J. Sethian, Numerical methods for propagating fronts, in Variational Methods for Free Surface Interfaces, edited by P. Concus and R. Finn (Springer-Verlag, Berlin/New York, 1987).]]Google ScholarGoogle Scholar
  31. 31. J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci.93, 1591 (1996).]]Google ScholarGoogle ScholarCross RefCross Ref
  32. 32. J. Sethian, Fast marching methods, SIAM Rev.41, 199 (1999).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33. J. Sethian, Level Set Methods and Fast Marching Methods (Cambridge Univ. Press, Cambridge, UK, 1999).]]Google ScholarGoogle Scholar
  34. 34. J. Sethian, Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. Comput. Phys.169, 503 (2001).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 35. C. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock capturing schemes, J. Comput. Phys.77, 439 (1988).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. 36. P. Smolarkiewicz, The multi-dimensional Crowley advection scheme, Month. Weather Rev.110, 1968 (1982).]]Google ScholarGoogle ScholarCross RefCross Ref
  37. 37. M. Sussmam and E. Puckett, A. coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys.162, 301 (2000).]] Google ScholarGoogle Scholar
  38. 38. M. Sussman, A. Almgren, J. Bell, P. Colella, L. Howell, and M. Welcome. An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys.148, 81 (1999).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. 39. M. Sussman and E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput.20, 1165 (1999).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. 40. M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An improved level set method for incompressible two-phase flows, Comput. Fluids27, 663 (1998).]]Google ScholarGoogle Scholar
  41. 41. M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys.114, 146 (1994).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. 42. D. Torres and J. Brackbill, The point-set method: Front tracking without connectivity, J. Comput. Phys.165, 620 (2000).]] Google ScholarGoogle Scholar
  43. 43. G. Tryggvason, B. Bunner. A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys.169, 708 (2001).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. 44. S.-O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys.100, 25 (1992).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. 45. M. Williams, D. Kothe, and E. Puckett, Approximating interfacial topologies with applications for interface tracking algorithms, in 37th AIAA Aerospace Sciences Meeting, AIAA 99-1076 (1999).]]Google ScholarGoogle ScholarCross RefCross Ref
  46. 46. M. Williams, D. Kothe, and E. Puckett, Convergence and accuracy of kernal-based continuum surface tension models, in Fluid Dynamics at Interfaces, edited by W. Shyy (Cambridge Univ. Press, Cambridge, UK, 1999), p. 347.]]Google ScholarGoogle Scholar
  47. 47. S. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys.31, 335 (1979).]]Google ScholarGoogle ScholarCross RefCross Ref
  48. 48. Y. Zhang, K. Yeo, B. Khoo, and C. Wang, 3D jet impact and turoidal bubbles, J. Comput. Phys.166, 336 (2001).]] Google ScholarGoogle Scholar

Index Terms

  1. A hybrid particle level set method for improved interface capturing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of Computational Physics
          Journal of Computational Physics  Volume 183, Issue 1
          November 20, 2002
          331 pages

          Publisher

          Academic Press Professional, Inc.

          United States

          Publication History

          • Published: 20 November 2002

          Qualifiers

          • article