skip to main content
research-article
Free Access

Computable processes and bisimulation equivalence

Authors Info & Claims
Published:01 November 1996Publication History
Skip Abstract Section

Abstract

Abstract

A process is calledcomputable if it can be modelled by a transition system that has a recursive structure—implying finite branching. The equivalence relation between transition systems considered is strong bisimulation equivalence. The transition systems studied in this paper can be associated to processes specified in common specification languages such as CCS, LOTOS, ACP and PSF. As a means for defining transition systems up to bisimulation equivalence, the specification languageμCRL is used. Two simple fragments of,μCRL are singled out, yielding universal expressivity with respect to recursive and primitive recursive transition systems. For both these domains the following properties are classified in the arithmetical hierarchy:bisimilarity, perpetuity (both ∏10),regularity (having a bisimilar, finite representation, Σ20),acyclic regularity10), anddeadlock freedom (distinguishing deadlock from successful termination, ∏10). Finally, it is shown that in the domain of primitive recursive transition systems over a fixed, finite label set, a genuine hierarchy in bisimilarity can be defined by the complexity of the witnessing relations, which extends r.e. bisimilarity. Hence, primitive recursive transition systems already form an interesting class.

References

  1. [AuB84] Austry D.Boudol G.Algèbre de processus et synchronisationsTheoretical Computer Science19843019113110.1016/0304-3975(84)90067-70533.68026748133Google ScholarGoogle ScholarCross RefCross Ref
  2. [BaB92] Baeten, J.C.M. and Bergstra, J.A.: Process algebra with signals and conditions. In M. Broy, editor,Programming and Mathematical Methods, Proceedings Summer School Marktoberdorf 1991, pages 273–323. Springer-Verlag, 1992. NATO ASI Series F88.Google ScholarGoogle Scholar
  3. [BBK87] Baeten J.C.M.Bergstra J.A.Klop J.W.On the consistency of Koomen's fair abstraction ruleTheoretical Computer Science1987511/212917610.1016/0304-3975(87)90052-10621.68010908483Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [Ber91] Bergstra, J.A.: 1991. Personal Communications.Google ScholarGoogle Scholar
  5. [BeG94] Bezem, M.A. and Groote, J.F.: Invariants in process algebra with data. In [JoP94], pages 401–416, 1994.Google ScholarGoogle Scholar
  6. [BoG96] Bosscher, D.J.B. and Griffioen, W.O.D.: Regularity for a class of context-free processes is decidable. In proceedings of ICALP'96, to appear.Google ScholarGoogle Scholar
  7. [BeK84] Bergstra J.A.Klop J.W.Process algebra for synchronous communicationInformation and Computation1984601/31091370597.68027764282Google ScholarGoogle Scholar
  8. [BeK85] Bergstra J.A.Klop J.W.Algebra of communicating processes with abstractionTheoretical Computer Science19853717712110.1016/0304-3975(85)90088-X0579.68016796314Google ScholarGoogle ScholarCross RefCross Ref
  9. [BaV95] Baeten, J.C.M. and Verhoef, C.: Concrete process algebra. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors,Handbook of Logic in Computer Science, Volume IV, Syntactical Methods, pages 149–268. Oxford University Press, 1995.Google ScholarGoogle Scholar
  10. [BaW90] Baeten, J.C.M. and Weijland, W.P.:Process Algebra. Cambridge Tracts in Theoretical Computer Science 18. Cambridge University Press, 1990.Google ScholarGoogle Scholar
  11. [CCI87] CCITT Working Party X/1.Recommendation Z.100 (SDL), 1987.Google ScholarGoogle Scholar
  12. [Dar90] Darondeau Ph.Guessarian I.Concurrency and computabilitySemantics of Systems of Concurrent Processes1990La Roche Posay, FranceSpringer London22323810.1007/3-540-53479-2_9Google ScholarGoogle Scholar
  13. [Dar91] Darondeau Ph.Recursive graphs are not stable under maximal reductionBulletin of the European Association for Theoretical Computer Science1991441861890744.68106Google ScholarGoogle Scholar
  14. [Dav82] Davis, M.:Computability and Unsolvability. Dover Publications, Inc., 1982.Google ScholarGoogle Scholar
  15. [Gla95] van Glabbeek, R.J.: On the expressiveness of ACP (extended abstract). In [PVV95], pages 188–217, 1995.Google ScholarGoogle Scholar
  16. [GrP90] Groote J.F.Ponse A.The syntax and semantics ofμCRLReport CS-R90761990AmsterdamCWIGoogle ScholarGoogle Scholar
  17. [GrP91a] Groote, J.F. and Ponse, A.:μCRL: A base for analysing processes with data. In E. Best and G. Rozenberg, editors,Proceedings 3rdWorkshop on Concurrency and Compositionality, Goslar, GMD-Studien Nr. 191, pages 125–130. Universität Hildesheim, 1991.Google ScholarGoogle Scholar
  18. [GrP91b] Groote, J.F. and Ponse, A.: Proof theory forμCRL. Report CS-R9138, CWI, 1991.Google ScholarGoogle Scholar
  19. [GrP93] Groote, J.F. and Ponse, A.: Proof theory forμCRL: a language for processes with data. In D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors,Proceedings of the International Workshop on Semantics of Specification Languages, pages 232–251. Workshops in Computing, Springer-Verlag, 1994.Google ScholarGoogle Scholar
  20. [GrP95] Groote, J.F. and Ponse, A.: The syntax and semantics ofμCRL. In [PVV95], pages 26–62, 1995. (Appeared earlier as [GrP90].)Google ScholarGoogle Scholar
  21. [GrV92] Groote J.F.Vaandrager F.W.Structured operational semantics and bisimulation as a congruenceInformation and Computation1992100220226010.1016/0890-5401(92)90013-60752.680531181993Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [HHJ87] Hoare C.A.R.Hayes I.J.Jifeng H.E.Morgan C.C.Roscoe A.W.Sanders J.W.Sorensen I.H.Spivey J.M.Sufrin B.A.Laws of programmingCommunications of the ACM198730867268610.1145/27651.276530629.68006Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [HU79] Hopcroft, J.E. and Ullman, J.D.:Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.Google ScholarGoogle Scholar
  24. [ISO87] ISO.Information processing systems — open systems interconnection — LOTOS — a formal description technique based on the temporal ordering of observational behaviour ISO/TC97/SC21/N DIS8807, 1987.Google ScholarGoogle Scholar
  25. [JoP94] Jonsson B.Parrow J.Proceedings CONCUR 941994Uppsala, SwedenSpringer London0825.68132Google ScholarGoogle Scholar
  26. [Kle52] Kleene, S.C.:Introduction to Meta Mathematics. North-Holland, 1952.Google ScholarGoogle Scholar
  27. [Mil83] Milner R.Calculi for synchrony and asynchronyTheoretical Computer Science19832526731010.1016/0304-3975(83)90114-70512.68026716132Google ScholarGoogle ScholarCross RefCross Ref
  28. [Mil89] Milner R.Communication and Concurrency1989Englewood CliffsPrentice-Hall International0683.68008Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [MaM94] Mauw, S. and Mulder, H.: Regularity of BPA-systems is decidable. In [JoP94], pages 34–47, 1994.Google ScholarGoogle Scholar
  30. [MaV90] Mauw S.Veltink G.J.A process specification formalismFundamenta Informaticae1990XIII85139Google ScholarGoogle Scholar
  31. [MaV93] Mauw, S. and Veltink, G.J.: editors,Algebraic Specification of Communication Protocols. Cambridge Tracts in Theoretical Computer Science 36. Cambridge University Press, 1993.Google ScholarGoogle Scholar
  32. [Par81] Park, D.M.R.: Concurrency and automata on infinite sequences. In P. Deussen, editor, 5thGI Conference, LNCS 104, pages 167–183. Springer-Verlag, 1981.Google ScholarGoogle Scholar
  33. [Plo81] Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.Google ScholarGoogle Scholar
  34. [PVV95] Ponse, A., Verhoef, C. and van Vlijmen, S.F.M.: editors,Algebra of Communicating Processes, Utrecht 1994. Workshops in Computing, Springer-Verlag, 1995.Google ScholarGoogle Scholar
  35. [Rog67] Rogers, H.:Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Co., 1967.Google ScholarGoogle Scholar
  36. [Sim85] de Simone R.Higher-level synchronising devices inMeije-SCCSTheoretical Computer Science19853724526710.1016/0304-3975(85)90093-30598.68027824475Google ScholarGoogle ScholarCross RefCross Ref
  37. [Vaa93] Vaandrager F.W.de Bakker J.W.de Roever W.P.Rozenberg G.Expressiveness results for process algebras1993Beekbergen, The NetherlandsSpringer London609638Google ScholarGoogle Scholar

Index Terms

  1. Computable processes and bisimulation equivalence
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader