Abstract
This paper presents a tutorial introduction to the use of variational methods for inference and learning in graphical models (Bayesian networks and Markov random fields). We present a number of examples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational methods, which exploit laws of large numbers to transform the original graphical model into a simplified graphical model in which inference is efficient. Inference in the simpified model provides bounds on probabilities of interest in the original model. We describe a general framework for generating variational transformations based on convex duality. Finally we return to the examples and demonstrate how variational algorithms can be formulated in each case.
- Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
- Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164-171.Google Scholar
Cross Ref
- Bishop, C. M., Lawrence, N., Jaakkola, T. S., & Jordan, M. I. (1998). Approximating posterior distributions in belief networks using mixtures. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems 10, Cambridge MA: MIT Press. Google Scholar
Digital Library
- Cover, T., & Thomas, J. (1991). Elements of information theory. New York: John Wiley. Google Scholar
Digital Library
- Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60, 141-153. Google Scholar
Digital Library
- Dayan, P., Hinton, G. E., Neal, R., & Zemel, R. S. (1995). The Helmholtz Machine. Neural Computation, 7, 889-904. Google Scholar
Digital Library
- Dean, T., & Kanazawa, K. (1989). A model for reasoning about causality and persistence. Computational Intelligence, 5, 142-150. Google Scholar
Digital Library
- Dechter, R. (1999). Bucket elimination: A unifying framework for probabilistic inference. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press. Google Scholar
Digital Library
- Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B39, 1-38.Google Scholar
- Draper, D. L., & Hanks, S. (1994). Localized partial evaluation of belief networks. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.Google Scholar
Cross Ref
- Frey, B., Hinton, G. E., & Dayan, P. (1996). Does the wake-sleep algorithm learn good density estimators? In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.Google Scholar
- Fung, R. & Favero, B. D. (1994). Backward simulation in Bayesian networks. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.Google Scholar
Cross Ref
- Galland, C. (1993). The limitations of deterministic Boltzmann machine learning. Network, 4, 355-379.Google Scholar
Cross Ref
- Ghahramani, Z., & Hinton, G. E. (1996). Switching state-space models. (Technical Report CRG-TR-96-3). Toronto: Department of Computer Science, University of Toronto.Google Scholar
- Ghahramani, Z., & Jordan, M. I. (1997). Factorial Hidden Markov models. Machine Learning, 29, 245-273. Google Scholar
Digital Library
- Gilks, W., Thomas, A., & Spiegelhalter, D. (1994). A language and a program for complex Bayesian modelling. The Statistician, 43, 169-178.Google Scholar
Cross Ref
- Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press. Google Scholar
Digital Library
- Henrion, M. (1991). Search-based methods to bound diagnostic probabilities in very large belief nets. Uncertainty and Artificial Intelligence: Proceedings of the Seventh Conference. San Mateo, CA: Morgan Kaufmann. Google Scholar
Digital Library
- Hinton, G. E., & Sejnowski, T. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (Vol. 1). Cambridge, MA: MIT Press. Google Scholar
Digital Library
- Hinton, G. E., & van Camp, D. (1993). Keeping neural networks simple by minimizing the description length of the weights. Proceedings of the 6th Annual Workshop on Computational Learning Theory. New York, NY: ACM Press. Google Scholar
Digital Library
- Hinton, G. E., Dayan, P., Frey, B., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.Google Scholar
Cross Ref
- Hinton, G. E., Sallans, B., & Ghahramani, Z. (1999). A hierarchical community of experts. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press. Google Scholar
Digital Library
- Horvitz, E. J., Suermondt, H. J., & Cooper, G. F. (1989). Bounded conditioning: Flexible inference for decisions under scarce resources. Conference on Uncertainty in Artificial Intelligence: Proceedings of the Fifth Conference. Mountain View, CA: Association for UAI.Google Scholar
- Jaakkola, T. S., & Jordan, M. I. (1996). Computing upper and lower bounds on likelihoods in intractable networks. Uncertainty and Artificial Intelligence: Proceedings of the Twelth Conference. San Mateo, CA: Morgan Kaufmann. Google Scholar
Digital Library
- Jaakkola, T. S. (1997). Variational methods for inference and estimation in graphical models. Unpublished doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA. Google Scholar
Digital Library
- Jaakkola, T. S., & Jordan, M. I. (1997a). Recursive algorithms for approximating probabilities in graphical models. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9. Cambridge, MA: MIT Press.Google Scholar
- Jaakkola, T. S., & Jordan, M. I. (1997b). Bayesian logistic regression: A variational approach. In D. Madigan & P. Smyth (Eds.), Proceedings of the 1997 Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, FL.Google Scholar
- Jaakkola, T. S., & Jordan, M. I. (1999a). Improving the mean field approximation via the use of mixture distributions. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press. Google Scholar
Digital Library
- Jaakkola, T. S., & Jordan, M. I. (1999b). Variational methods and the QMR-DT database. Journal of Artificial Intelligence Research, 10, 291-322. Google Scholar
Digital Library
- Jensen, C. S., Kong, A., & Kjærulff, U. (1995). Blocking-Gibbs sampling in very large probabilistic expert systems. International Journal of Human-Computer Studies, 42, 647-666. Google Scholar
Digital Library
- Jensen, F. V., & Jensen, F. (1994). Optimal junction trees. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.Google Scholar
Cross Ref
- Jensen, F. V. (1996). An introduction to Bayesian networks. London: UCL Press. Google Scholar
Digital Library
- Jordan, M. I. (1994). A statistical approach to decision tree modeling. In M. Warmuth (Ed.), Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory. New York: ACM Press. Google Scholar
Digital Library
- Jordan, M. I., Ghahramani, Z., & Saul, L. K. (1997). Hidden Markov decision trees. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9. Cambridge, MA: MIT Press.Google Scholar
- Kanazawa, K., Koller, D., & Russell, S. (1995). Stochastic simulation algorithms for dynamic probabilistic networks. Uncertainty and Artificial Intelligence: Proceedings of the Eleventh Conference. San Mateo, CA: Morgan Kaufmann. Google Scholar
Digital Library
- Kjærulff, U. (1990). Triangulation of graphs-Algorithms giving small total state space. (Research Report R-90- 09). Department of Mathematics and Computer Science, Aalborg University, Denmark.Google Scholar
- Kjærulff, U. (1994). Reduction of computational complexity in Bayesian networks through removal of weak dependences. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.Google Scholar
Cross Ref
- MacKay, D. J. C. (1997). Ensemble learning for hidden Markov models. Unpublished manuscript. Cambridge: Department of Physics, University of Cambridge.Google Scholar
- McEliece, R. J., MacKay, D. J. C., & Cheng, J.-F. (1998). Turbo decoding as an instance of Pearl's "belief propagation algorithm." IEEE Journal on Selected Areas in Communication, 16, 140-152. Google Scholar
Digital Library
- Merz, C. J., & Murphy, P. M. (1996). UCI repository of machine learning databases. Irvine, CA: Department of Information and Computer Science, University of California.Google Scholar
- Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113. Google Scholar
Digital Library
- Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo methods. (Technical Report CRG-TR-93- 1). Toronto: Department of Computer Science, University of Toronto.Google Scholar
- Neal, R., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press. Google Scholar
Digital Library
- Parisi, G. (1988). Statistical field theory. Redwood City, CA: Addison-Wesley.Google Scholar
- Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmannn. Google Scholar
Digital Library
- Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for neural networks. Complex Systems, 1, 995-1019.Google Scholar
- Rockafellar, R. (1972). Convex analysis. Princeton University Press.Google Scholar
- Rustagi, J. (1976). Variational methods in statistics. New York: Academic Press.Google Scholar
- Sakurai, J. (1985). Modern quantum mechanics. Redwood City, CA: Addison-Wesley.Google Scholar
- Saul, L. K., & Jordan, M. I. (1994). Learning in Boltzmann trees. Neural Computation, 6, 1173-1183.Google Scholar
Digital Library
- Saul, L. K., Jaakkola, T. S., & Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61-76. Google Scholar
Cross Ref
- Saul, L. K., & Jordan, M. I. (1996). Exploiting tractable substructures in intractable networks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.Google Scholar
- Saul, L. K., & Jordan, M. I. (1999). A mean field learning algorithm for unsupervised neural networks. In M. I. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press. Google Scholar
Digital Library
- Seung, S. (1995). Annealed theories of learning. In J.-H. Oh, C. Kwon, S. Cho (Eds.), Neural networks: The statistical mechanics perspectives. Singapore: World Scientific.Google Scholar
- Shachter, R. D., Andersen, S. K., & Szolovits, P. (1994). Global conditioning for probabilistic inference in belief networks. Uncertainty and Artificial Intelligence: Proceedings of the Tenth Conference. San Mateo, CA: Morgan Kaufmann.Google Scholar
Cross Ref
- Shenoy, P. P. (1992). Valuation-based systems for Bayesian decision analysis. Operations Research, 40, 463-484. Google Scholar
Digital Library
- Shwe, M. A., & Cooper, G. F. (1991). An empirical analysis of likelihood--Weighting simulation on a large, multiply connected medical belief network. Computers and Biomedical Research, 24, 453-475. Google Scholar
Digital Library
- Shwe, M. A., Middleton, B., Heckerman, D. E., Henrion, M., Horvitz, E. J., Lehmann, H. P., & Cooper, G. F. (1991). Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Meth. Inform. Med., 30, 241-255.Google Scholar
Cross Ref
- Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227-270. Google Scholar
Digital Library
- Waterhouse, S., MacKay, D. J. C., & Robinson, T. (1996). Bayesian methods for mixtures of experts. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8. Cambridge, MA: MIT Press.Google Scholar
- Williams, C. K. I., & Hinton, G. E. (1991). Mean field networks that learn to discriminate temporally distorted strings. In D. S. Touretzky, J. Elman, T. Sejnowski, & G. E. Hinton (Eds.), Proceedings of the 1990 Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann.Google Scholar
Index Terms
- An Introduction to Variational Methods for Graphical Models
Recommendations
Bayesian parameter estimation via variational methods
We consider a logistic regression model with a Gaussian prior distribution over the parameters. We show that an accurate variational transformation can be used to obtain a closed form approximation to the posterior distribution of the parameters thereby ...
A simple graphical approach for understanding probabilistic inference in Bayesian networks
We present a simple graphical method for understanding exact probabilistic inference in discrete Bayesian networks (BNs). A conditional probability table (conditional) is depicted as a directed acyclic graph involving one or more black vertices and zero ...
Multiagent bayesian forecasting of structural time-invariant dynamic systems with graphical models
Time series are found widely in engineering and science. We study forecasting of stochastic, dynamic systems based on observations from multivariate time series. We model the domain as a dynamic multiply sectioned Bayesian network (DMSBN) and populate ...




Comments