ABSTRACT
Parallax handling is a challenging task for image stitching. This paper presents a local stitching method to handle parallax based on the observation that input images do not need to be perfectly aligned over the whole overlapping region for stitching. Instead, they only need to be aligned in a way that there exists a local region where they can be seamlessly blended together. We adopt a hybrid alignment model that combines homography and content-preserving warping to provide flexibility for handling parallax and avoiding objectionable local distortion. We then develop an efficient randomized algorithm to search for a homography, which, combined with content-preserving warping, allows for optimal stitching. We predict how well a homography enables plausible stitching by finding a plausible seam and using the seam cost as the quality metric. We develop a seam finding method that estimates a plausible seam from only roughly aligned images by considering both geometric alignment and image content. We then pre-align input images using the optimal homography and further use content-preserving warping to locally refine the alignment. We finally compose aligned images together using a standard seam-cutting algorithm and a multi-band blending algorithm. Our experiments show that our method can effectively stitch images with large parallax that are difficult for existing methods.
Recommendations
Image alignment and stitching: a tutorial
This tutorial reviews image alignment and image stitching algorithms. Image alignment algorithms can discover the correspondence relationships among images with varying degrees of overlap. They are ideally suited for applications such as video ...
Large Parallax Image Stitching Using an Edge-Preserving Diffeomorphic Warping Process
Advanced Concepts for Intelligent Vision SystemsAbstractImage Stitching is a hard task to solve in the presence of large parallax in video frames. In many cases, video frames shot using hand-held cameras have low resolution, blur and large parallax errors. Most recent works fail to align such a ...




Comments