Abstract
This article discusses the capabilities of state-of-the art GPU-based high-throughput computing systems and considers the challenges to scaling single-chip parallel-computing systems, highlighting high-impact areas that the computing research community can address. Nvidia Research is investigating an architecture for a heterogeneous high-performance computing system that seeks to address these challenges.
Recommendations
On the Efficacy of a Fused CPU+GPU Processor (or APU) for Parallel Computing
SAAHPC '11: Proceedings of the 2011 Symposium on Application Accelerators in High-Performance ComputingThe graphics processing unit (GPU) has made significant strides as an accelerator in parallel computing. However, because the GPU has resided out on PCIe as a discrete device, the performance of GPU applications can be bottlenecked by data transfers ...
Performance Tuning of Matrix Multiplication in OpenCL on Different GPUs and CPUs
SCC '12: Proceedings of the 2012 SC Companion: High Performance Computing, Networking Storage and AnalysisOpenCL (Open Computing Language) is a framework for general-purpose parallel programming. Programs written in OpenCL are functionally portable across multiple processors including CPUs, GPUs, and also FPGAs. Using an auto-tuning technique makes ...
An OpenCL micro-benchmark suite for GPUs and CPUs
Open computing language (OpenCL) is a new industry standard for task-parallel and data-parallel heterogeneous computing on a variety of modern CPUs, GPUs, DSPs, and other microprocessor designs. OpenCL is vendor independent and hence not specialized for ...




Comments