Abstract
This paper describes the Semi-Global Matching (SGM) stereo method. It uses a pixelwise, Mutual Information based matching cost for compensating radiometric differences of input images. Pixelwise matching is supported by a smoothness constraint that is usually expressed as a global cost function. SGM performs a fast approximation by pathwise optimizations from all directions. The discussion also addresses occlusion detection, subpixel refinement and multi-baseline matching. Additionally, postprocessing steps for removing outliers, recovering from specific problems of structured environments and the interpolation of gaps are presented. Finally, strategies for processing almost arbitrarily large images and fusion of disparity images using orthographic projection are proposed.A comparison on standard stereo images shows that SGM is among the currently top-ranked algorithms and is best, if subpixel accuracy is considered. The complexity is linear to the number of pixels and disparity range, which results in a runtime of just 1-2s on typical test images. An in depth evaluation of the Mutual Information based matching cost demonstrates a tolerance against a wide range of radiometric transformations. Finally, examples of reconstructions from huge aerial frame and pushbroom images demonstrate that the presented ideas are working well on practical problems.
Index Terms
Stereo Processing by Semiglobal Matching and Mutual Information
Recommendations
The study of stereo matching optimization based on multi-baseline trinocular model
AbstractThe huge computational complexity, occlusion and low texture region problems make stereo matching a big challenge. In this work, we use multi-baseline trinocular camera model to study how to accelerate the stereo matching algorithms and improve ...
Omnivergent Stereo
The notion of a virtual camera for optimal 3D reconstruction is introduced. Instead of planar perspective images that collect many rays at a fixed viewpoint, omnivergent cameras collect a small number of rays at many different viewpoints. The resulting ...
Stereo Reconstruction from Multiperspective Panoramas
Abstract--A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular ...




Comments