Abstract
We present a rapidly exploring-random-tree-based parallel motion planning algorithm that uses the maximal Poisson-disk sampling scheme. Our approach exploits the free-disk property of the maximal Poisson-disk samples to generate nodes and perform tree expansion. Furthermore, we use an adaptive scheme to generate more samples in challenging regions of the configuration space. The Poisson-disk sampling results in improved parallel performance and we highlight the performance benefits on multicore central processing units as well as manycore graphics processing units on different benchmarks.
- L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” Trans. Robot. Autom. , vol. Volume 12 , no. Issue 4, pp. 566–580, 1996.Google Scholar
Cross Ref
- S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Int. J. Robot. Res. , vol. Volume 20 , no. Issue 5, pp. 378–400, 2001.Google Scholar
Cross Ref
- R. L. Cook, “Stochastic sampling and distributed ray tracing,” in An Introduction to Ray Tracing . New York, NY, USA: Academic, 1989, pp. 161–199. Google Scholar
Digital Library
- A. Glassner, An Introduction to Ray Tracing . Burlington, MA, USA: Morgan Kaufmann, 1989. Google Scholar
Digital Library
- A. Lagae and P. Dutré, “A comparison of methods for generating Poisson disk distributions,” Comput. Grap. Forum , vol. Volume 27 , no. Issue 1, pp. 114–129, 2008.Google Scholar
- C. Park, J. Pan, and D. Manocha, “Poisson-RRT,” in Proc. IEEE Int. Conf. Robot. Autom. , 2014, pp. 4667–4673.Google Scholar
Cross Ref
- J. Kuffner, and S. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc. Int. Conf. Robot. Autom. , 2000, vol. Volume 2 , pp. 995–1001.Google Scholar
Cross Ref
- A. Yershova, L. Jaillet, T. Simon, and S. M. LaValle, “Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain,” in Proc. Int. Conf. Robot. Autom. , 2005, pp. 3867–3872.Google Scholar
Cross Ref
- S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based rapidly-exploring random tree,” in Proc. IEEE Int. Conf. Robot. Autom. , 2006, pp. 895–900.Google Scholar
Cross Ref
- R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner, “Bispace planning: Concurrent multi-space exploration,” in Proc. Robot.: Sci. Syst. , 2008.Google Scholar
Cross Ref
- S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “RESAMPL: A region-sensitive adaptive motion planner,” in Algorithmic Foundation of Robotics VII . Berlin, Germany: Springer, 2008, pp. 285–300.Google Scholar
- A. Shkolnik and R. Tedrake, “Sample-based planning with volumes in configuration space,” CoRR , vol. abs/1109.3145, 2011.Google Scholar
- J. Denny, M. Morales, S. Rodriguez, and N. M. Amato, “Adapting RRT growth for heterogeneous environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2013, pp. 1772–1778.Google Scholar
Cross Ref
- S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res. , vol. Volume 30 , no. Issue 7, pp. 846–894, 2011. Google Scholar
Digital Library
- O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algorithms for optimal motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 2013, pp. 2421–2428.Google Scholar
Cross Ref
- O. Salzman and D. Halperin, “Asymptotically near-optimal RRT for fast, high-quality, motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 2014, pp. 4680–4685.Google Scholar
Cross Ref
- T. Lozano-Pérez and P. A. O'Donnell, “Parallel robot motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 1991, pp. 1000–1007.Google Scholar
Cross Ref
- N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are embarrassingly parallel,” in Proc. IEEE Int. Conf. Robot. Autom. , 1999, vol. Volume 1 , pp. 688–694.Google Scholar
Cross Ref
- R. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configuration space for findpath with rotation,” IEEE Trans. Syst. Man, Cybern. , vol. Volume SMC-15 , no. Issue 2, pp. 224–233, 1985.Google Scholar
Cross Ref
- S. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. Amato, “A scalable method for parallelizing sampling-based motion planning algorithms,” in Proc. Int. Conf. Robot. Autom. , 2012, pp. 2529–2536.Google Scholar
Cross Ref
- S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato, “A scalable distributed RRT for motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 2013, pp. 5088–5095.Google Scholar
Cross Ref
- C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato, “Blind RRT: A probabilistically complete distributed RRT,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2013, pp. 1758–1765.Google Scholar
Cross Ref
- E. Plaku and L. Kavraki, “Distributed sampling-based roadmap of trees for large-scale motion planning,” in Proc. Int. Conf. Robot. Autom. , 2005, pp. 3868–3873.Google Scholar
Cross Ref
- D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing RRT on distributed-memory architectures,” in Proc. Int. Conf. Robot. Autom. , 2011, pp. 2261–2266.Google Scholar
Cross Ref
- M. Otte and N. Correll, “Path planning with forests of random trees: Parallelization with super linear speedup,” <institution content-type=department>Dept. Comput. Sci.</institution>, <institution content-type=institution>Univ. Colorado</institution>, Boulder, CO, USA, Tech. Rep. pp.1079–11, 2011.Google Scholar
- B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot better: Improving path quality by a path-merging algorithm,” IEEE Trans. Robot. , vol. Volume 27 , no. Issue 2, pp. 365–371, 2011. Google Scholar
Digital Library
- S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,” in Proc. Italian Assoc. Artif. Intell. , 2002, pp. 834–841.Google Scholar
- I. Aguinaga, D. Borro, and L. Matey, “Parallel RRT-based path planning for selective disassembly planning,” Int. J. Adv. Manuf. Technol. , vol. Volume 36 , no. Issue 11, pp. 1221–1233, 2008.Google Scholar
Cross Ref
- I. Sucan and L. E. Kavraki, “A sampling-based tree planner for systems with complex dynamics,” IEEE Trans. Robot. , vol. Volume 28 , no. Issue 1, pp. 116–131, 2012. Google Scholar
Digital Library
- J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion planning with superlinear speedup,” in Proc. IEEE/RSJ Intell. Robots Syst. , 2012, pp. 1206–1212.Google Scholar
- C. Pisula, K. Hoff, M. Lin, and D. Manocha, “Randomized path planning for a rigid body based on hardware accelerated Voronoi sampling,” in Proc. Workshop Algorithmic Found. Robot. , vol. Volume 18 , pp. 279–292, 2000.Google Scholar
- J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-time motion planning and global navigation using GPUs,” in Proc. AAAI Conf. Artif. Intell. , 2010. Google Scholar
Digital Library
- J. T. Kider, M. Henderson, M. Likhachev, and A. Safonova, “High-dimensional planning on the GPU,” in Proc. IEEE Int. Conf. Robot. Autom. , 2010, pp. 1245–1251.Google Scholar
Cross Ref
- C. Park, J. Pan, and D. Manocha, “Real-time optimization-based planning in dynamic environments using GPUs,” in Proc. IEEE Int. Conf. Robot. Autom. , 2013, pp. 4090–4097.Google Scholar
Cross Ref
- J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the RRT and the RRT<inline-formula><tex-math notation=LaTeX>$^*$</tex-math></inline-formula>,” in Proc. Int. Conf. Intell. Robots Syst. , 2011, pp. 3513–3518.Google Scholar
- A. Lagae and P. Dutré, “A procedural object distribution function,” ACM Trans. Grap. , vol. Volume 24 , no. Issue 4, pp. 1442–1461, 2005. Google Scholar
Digital Library
- M. Ebeida, S. Mitchell, A. Patney, A. Davidson, and J. Owens, “A simple algorithm for maximal Poisson-disk sampling in high dimensions,” Comput. Grap. Forum , vol. Volume 31 , no. Issue 2, pp. 785–794, 2012. Google Scholar
Digital Library
- M. S. Ebeida et al., “Spoke darts for efficient high dimensional blue noise sampling,” CoRR , vol. Volume abs/1408.1118 , 2014. {Online}. Available: http://arxiv.org/abs/1408.1118Google Scholar
- S. M. LaValle, Planning Algorithms . Cambridge, U.K.: Cambridge Univ. Press, 2006. Google Scholar
Digital Library
- H. Niederreiter, Quasi-Monte Carlo Methods . Hoboken, NJ, USA: Wiley, 1992.Google Scholar
- R. Bohlin, “Path planning in practice; lazy evaluation on a multi-resolution grid,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2001, vol. Volume 1 , pp. 49–54.Google Scholar
Cross Ref
- M. Likhachev and D. Ferguson, “Planning long dynamically feasible maneuvers for autonomous vehicles,” Int. J. Robot. Res. , vol. Volume 28 , no. Issue 8, pp. 933–945, 2009. Google Scholar
Digital Library
- M. Pivtoraiko and A. Kelly, “Differentially constrained motion replanning using state lattices with graduated fidelity,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2008, pp. 2611–2616.Google Scholar
Cross Ref
- E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for approximate nearest neighbor in high dimensional spaces,” SIAM J. Comput. , vol. Volume 30 , no. Issue 2, pp. 457–474, 2000. Google Scholar
Digital Library
- G. Marsaglia et al., “Choosing a point from the surface of a sphere,” Ann. Math. Statist. , vol. Volume 43 , no. Issue 2, pp. 645–646, 1972.Google Scholar
Cross Ref
- V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search using GPU,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops , 2008, pp. 1–6.Google Scholar
Cross Ref
- J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor computation for GPU-based motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2010, pp. 2243–2248.Google Scholar
- S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical structure for rapid interference detection,” in Proc. 23rd Annu. Conf. Comput. Grap. Interact. Techn. , 1996, pp. 171–180. Google Scholar
Digital Library
- C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha, “Fast BVH construction on GPUs,” Comput. Grap. Forum , vol. Volume 28 , no. Issue 2, pp. 375–384, 2009.Google Scholar
Cross Ref
- I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE Robot. Autom. Mag. , vol. Volume 19 , no. Issue 4, pp. 72–82, 2012. {Online}. Available: http://ompl.kavrakilab.orgGoogle Scholar
Cross Ref
- C. Park, J. Pan, and D. Manocha, “Parallel RRT using Poisson-disk sampling,” <institution content-type=department>Dept. Comput. Sci.</institution>, <institution content-type=institution>Univ. North Carolina</institution>, Chapel Hill, NC, USA, Tech. Rep., 2013.Google Scholar
- R. Bohlin and L. Kavraki, “Path planning using lazy PRM,” in Proc. Int. Conf. Robot. Autom. , vol. Volume 1 , 2000, pp. 521–528.Google Scholar
Cross Ref
- J. M. Hammersley, “Monte carlo methods for solving multivariable problems,” Ann. New York Acad. Sci. , vol. Volume 86 , no. Issue 3, pp. 844–874, 1960.Google Scholar
Recommendations
Parallel Poisson disk sampling
Sampling is important for a variety of graphics applications include rendering, imaging, and geometry processing. However, producing sample sets with desired efficiency and blue noise statistics has been a major challenge, as existing methods are either ...
Maximal poisson-disk sampling via sampling radius optimization
SA '16: SIGGRAPH ASIA 2016 PostersMaximal Poisson-disk Sampling (MPS) is a fundamental research topic in computer graphics. An ideal MPS pattern should satisfy three properties: bias-free, minimal distance, maximal coverage. The classic approach for generating MPS is dart throwing, but ...
Efficient maximal poisson-disk sampling
We solve the problem of generating a uniform Poisson-disk sampling that is both maximal and unbiased over bounded non-convex domains. To our knowledge this is the first provably correct algorithm with time and space dependent only on the number of ...




Comments