skip to main content
research-article

Parallel Motion Planning Using Poisson-Disk Sampling

Authors Info & Claims
Published:01 April 2017Publication History
Skip Abstract Section

Abstract

We present a rapidly exploring-random-tree-based parallel motion planning algorithm that uses the maximal Poisson-disk sampling scheme. Our approach exploits the free-disk property of the maximal Poisson-disk samples to generate nodes and perform tree expansion. Furthermore, we use an adaptive scheme to generate more samples in challenging regions of the configuration space. The Poisson-disk sampling results in improved parallel performance and we highlight the performance benefits on multicore central processing units as well as manycore graphics processing units on different benchmarks.

References

  1. L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” Trans. Robot. Autom. , vol. Volume 12 , no. Issue 4, pp. 566–580, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Int. J. Robot. Res. , vol. Volume 20 , no. Issue 5, pp. 378–400, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. L. Cook, “Stochastic sampling and distributed ray tracing,” in An Introduction to Ray Tracing . New York, NY, USA: Academic, 1989, pp. 161–199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Glassner, An Introduction to Ray Tracing . Burlington, MA, USA: Morgan Kaufmann, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Lagae and P. Dutré, “A comparison of methods for generating Poisson disk distributions,” Comput. Grap. Forum , vol. Volume 27 , no. Issue 1, pp. 114–129, 2008.Google ScholarGoogle Scholar
  6. C. Park, J. Pan, and D. Manocha, “Poisson-RRT,” in Proc. IEEE Int. Conf. Robot. Autom. , 2014, pp. 4667–4673.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. Kuffner, and S. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc. Int. Conf. Robot. Autom. , 2000, vol. Volume 2 , pp. 995–1001.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Yershova, L. Jaillet, T. Simon, and S. M. LaValle, “Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain,” in Proc. Int. Conf. Robot. Autom. , 2005, pp. 3867–3872.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based rapidly-exploring random tree,” in Proc. IEEE Int. Conf. Robot. Autom. , 2006, pp. 895–900.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner, “Bispace planning: Concurrent multi-space exploration,” in Proc. Robot.: Sci. Syst. , 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “RESAMPL: A region-sensitive adaptive motion planner,” in Algorithmic Foundation of Robotics VII . Berlin, Germany: Springer, 2008, pp. 285–300.Google ScholarGoogle Scholar
  12. A. Shkolnik and R. Tedrake, “Sample-based planning with volumes in configuration space,” CoRR , vol. abs/1109.3145, 2011.Google ScholarGoogle Scholar
  13. J. Denny, M. Morales, S. Rodriguez, and N. M. Amato, “Adapting RRT growth for heterogeneous environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2013, pp. 1772–1778.Google ScholarGoogle ScholarCross RefCross Ref
  14. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res. , vol. Volume 30 , no. Issue 7, pp. 846–894, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algorithms for optimal motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 2013, pp. 2421–2428.Google ScholarGoogle ScholarCross RefCross Ref
  16. O. Salzman and D. Halperin, “Asymptotically near-optimal RRT for fast, high-quality, motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 2014, pp. 4680–4685.Google ScholarGoogle ScholarCross RefCross Ref
  17. T. Lozano-Pérez and P. A. O'Donnell, “Parallel robot motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 1991, pp. 1000–1007.Google ScholarGoogle ScholarCross RefCross Ref
  18. N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are embarrassingly parallel,” in Proc. IEEE Int. Conf. Robot. Autom. , 1999, vol. Volume 1 , pp. 688–694.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configuration space for findpath with rotation,” IEEE Trans. Syst. Man, Cybern. , vol. Volume SMC-15 , no. Issue 2, pp. 224–233, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. Amato, “A scalable method for parallelizing sampling-based motion planning algorithms,” in Proc. Int. Conf. Robot. Autom. , 2012, pp. 2529–2536.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato, “A scalable distributed RRT for motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. , 2013, pp. 5088–5095.Google ScholarGoogle ScholarCross RefCross Ref
  22. C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato, “Blind RRT: A probabilistically complete distributed RRT,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2013, pp. 1758–1765.Google ScholarGoogle ScholarCross RefCross Ref
  23. E. Plaku and L. Kavraki, “Distributed sampling-based roadmap of trees for large-scale motion planning,” in Proc. Int. Conf. Robot. Autom. , 2005, pp. 3868–3873.Google ScholarGoogle ScholarCross RefCross Ref
  24. D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing RRT on distributed-memory architectures,” in Proc. Int. Conf. Robot. Autom. , 2011, pp. 2261–2266.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Otte and N. Correll, “Path planning with forests of random trees: Parallelization with super linear speedup,” <institution content-type=department>Dept. Comput. Sci.</institution>, <institution content-type=institution>Univ. Colorado</institution>, Boulder, CO, USA, Tech. Rep. pp.1079–11, 2011.Google ScholarGoogle Scholar
  26. B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot better: Improving path quality by a path-merging algorithm,” IEEE Trans. Robot. , vol. Volume 27 , no. Issue 2, pp. 365–371, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,” in Proc. Italian Assoc. Artif. Intell. , 2002, pp. 834–841.Google ScholarGoogle Scholar
  28. I. Aguinaga, D. Borro, and L. Matey, “Parallel RRT-based path planning for selective disassembly planning,” Int. J. Adv. Manuf. Technol. , vol. Volume 36 , no. Issue 11, pp. 1221–1233, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  29. I. Sucan and L. E. Kavraki, “A sampling-based tree planner for systems with complex dynamics,” IEEE Trans. Robot. , vol. Volume 28 , no. Issue 1, pp. 116–131, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion planning with superlinear speedup,” in Proc. IEEE/RSJ Intell. Robots Syst. , 2012, pp. 1206–1212.Google ScholarGoogle Scholar
  31. C. Pisula, K. Hoff, M. Lin, and D. Manocha, “Randomized path planning for a rigid body based on hardware accelerated Voronoi sampling,” in Proc. Workshop Algorithmic Found. Robot. , vol. Volume 18 , pp. 279–292, 2000.Google ScholarGoogle Scholar
  32. J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-time motion planning and global navigation using GPUs,” in Proc. AAAI Conf. Artif. Intell. , 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. T. Kider, M. Henderson, M. Likhachev, and A. Safonova, “High-dimensional planning on the GPU,” in Proc. IEEE Int. Conf. Robot. Autom. , 2010, pp. 1245–1251.Google ScholarGoogle ScholarCross RefCross Ref
  34. C. Park, J. Pan, and D. Manocha, “Real-time optimization-based planning in dynamic environments using GPUs,” in Proc. IEEE Int. Conf. Robot. Autom. , 2013, pp. 4090–4097.Google ScholarGoogle ScholarCross RefCross Ref
  35. J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the RRT and the RRT<inline-formula><tex-math notation=LaTeX>$^*$</tex-math></inline-formula>,” in Proc. Int. Conf. Intell. Robots Syst. , 2011, pp. 3513–3518.Google ScholarGoogle Scholar
  36. A. Lagae and P. Dutré, “A procedural object distribution function,” ACM Trans. Grap. , vol. Volume 24 , no. Issue 4, pp. 1442–1461, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Ebeida, S. Mitchell, A. Patney, A. Davidson, and J. Owens, “A simple algorithm for maximal Poisson-disk sampling in high dimensions,” Comput. Grap. Forum , vol. Volume 31 , no. Issue 2, pp. 785–794, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. S. Ebeida et al., “Spoke darts for efficient high dimensional blue noise sampling,” CoRR , vol. Volume abs/1408.1118 , 2014. {Online}. Available: http://arxiv.org/abs/1408.1118Google ScholarGoogle Scholar
  39. S. M. LaValle, Planning Algorithms . Cambridge, U.K.: Cambridge Univ. Press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Niederreiter, Quasi-Monte Carlo Methods . Hoboken, NJ, USA: Wiley, 1992.Google ScholarGoogle Scholar
  41. R. Bohlin, “Path planning in practice; lazy evaluation on a multi-resolution grid,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2001, vol. Volume 1 , pp. 49–54.Google ScholarGoogle ScholarCross RefCross Ref
  42. M. Likhachev and D. Ferguson, “Planning long dynamically feasible maneuvers for autonomous vehicles,” Int. J. Robot. Res. , vol. Volume 28 , no. Issue 8, pp. 933–945, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Pivtoraiko and A. Kelly, “Differentially constrained motion replanning using state lattices with graduated fidelity,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2008, pp. 2611–2616.Google ScholarGoogle ScholarCross RefCross Ref
  44. E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for approximate nearest neighbor in high dimensional spaces,” SIAM J. Comput. , vol. Volume 30 , no. Issue 2, pp. 457–474, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. G. Marsaglia et al., “Choosing a point from the surface of a sphere,” Ann. Math. Statist. , vol. Volume 43 , no. Issue 2, pp. 645–646, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  46. V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search using GPU,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops , 2008, pp. 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  47. J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor computation for GPU-based motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. , 2010, pp. 2243–2248.Google ScholarGoogle Scholar
  48. S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical structure for rapid interference detection,” in Proc. 23rd Annu. Conf. Comput. Grap. Interact. Techn. , 1996, pp. 171–180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha, “Fast BVH construction on GPUs,” Comput. Grap. Forum , vol. Volume 28 , no. Issue 2, pp. 375–384, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  50. I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE Robot. Autom. Mag. , vol. Volume 19 , no. Issue 4, pp. 72–82, 2012. {Online}. Available: http://ompl.kavrakilab.orgGoogle ScholarGoogle ScholarCross RefCross Ref
  51. C. Park, J. Pan, and D. Manocha, “Parallel RRT using Poisson-disk sampling,” <institution content-type=department>Dept. Comput. Sci.</institution>, <institution content-type=institution>Univ. North Carolina</institution>, Chapel Hill, NC, USA, Tech. Rep., 2013.Google ScholarGoogle Scholar
  52. R. Bohlin and L. Kavraki, “Path planning using lazy PRM,” in Proc. Int. Conf. Robot. Autom. , vol. Volume 1 , 2000, pp. 521–528.Google ScholarGoogle ScholarCross RefCross Ref
  53. J. M. Hammersley, “Monte carlo methods for solving multivariable problems,” Ann. New York Acad. Sci. , vol. Volume 86 , no. Issue 3, pp. 844–874, 1960.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image IEEE Transactions on Robotics
    IEEE Transactions on Robotics  Volume 33, Issue 2
    April 2017
    258 pages

    Copyright © 2017

    Publisher

    IEEE Press

    Publication History

    • Published: 1 April 2017

    Qualifiers

    • research-article