skip to main content
10.1111/cgf.12147guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Automatic cinemagraph portraits

Published:19 June 2013Publication History

ABSTRACT

Cinemagraphs are a popular new type of visual media that lie in-between photos and video; some parts of the frame are animated and loop seamlessly, while other parts of the frame remain completely still. Cinemagraphs are especially effective for portraits because they capture the nuances of our dynamic facial expressions. We present a completely automatic algorithm for generating portrait cinemagraphs from a short video captured with a hand-held camera. Our algorithm uses a combination of face tracking and point tracking to segment face motions into two classes: gross, large-scale motions that should be removed from the video, and dynamic facial expressions that should be preserved. This segmentation informs a spatially-varying warp that removes the large-scale motion, and a graph-cut segmentation of the frame into dynamic and still regions that preserves the finer-scale facial expression motions. We demonstrate the success of our method with a variety of results and a comparison to previous work.

References

  1. URL: http://cinemagraphs.com. 1Google ScholarGoogle Scholar
  2. URL: http://www.filmindustrynetwork.biz/nyc-photographer-jamie-beck-cinemagraph/12173. 1Google ScholarGoogle Scholar
  3. URL: http://kinotopic.com. 1Google ScholarGoogle Scholar
  4. URL: http://cinemagr.am. 1Google ScholarGoogle Scholar
  5. URL: http://www.icinegraph.com. 1Google ScholarGoogle Scholar
  6. {ADA*04} Agarwala A., Dontcheva M., Agrawala M., Drucker S., Colburn A., Curless B., Salesin D., Cohen M.: Interactive digital photomontage. ACM Transactions on Graphics 23, 3 (Aug. 2004), 294--302. 2, 6 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {BAAR12} Bai J., Agarwala A., Agrawala M., Ramamoorthi R.: Selectively de-animating video. ACM Transactions on Graphics (2012). 1, 2, 3, 5, 7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {BVZ01} Boykov Y., Veksler O., Zabih R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 11 (Nov. 2001), 1222--1239. 2, 7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {FB81} Fischler M. A., Bolles R. C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6 (June 1981), 381--395. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {FH04} Felzenszwalb P. F., Huttenlocher D. P.: Distance transforms of sampled functions. Tech. rep., Cornell Computing and Information Science, 2004. 6Google ScholarGoogle Scholar
  11. {JMD*12} Joshi N., Mehta S., Drucker S., Stollnitz E., Hoppe H., Uyttendaele M., Cohen M.: Cliplets: juxtaposing still and dynamic imagery. In Proceedings of the 25th annual ACM symposium on User interface software and technology (2012), UIST '12, pp. 251--260. 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {KSE*03} Kwatra V., Schödl A., Essa I., Turk G., Bobick A.: Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics 22, 3 (July 2003), 277--286. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {LGJA09} Liu F., Gleicher M., Jin H., Agarwala A.: Content-preserving warps for 3d video stabilization. ACM Transactions on Graphics 28, 3 (July 2009), 44:1--44:9. 1, 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {Liu09} Liu C.: Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. PhD thesis, Massachusetts Institute of Technology, May 2009. 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {LJH13} Liao Z., Joshi N., Hoppe H.: Automated video looping with progressive dynamism. ACM Transactions on Graphics (2013). 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {LK81} Lucas B. D., Kanade T.: An iterative image registration technique with an application to stereo vision. International Joint Conference on Artificial Intelligence (1981). 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {SLC11} Saragih J. M., Lucey S., Cohn J. F.: Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vision 91, 2 (Jan. 2011), 200--215. 1, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {SSSE00} Schödl A., Szeliski R., Salesin D. H., Essa I.: Video textures. In Proceedings of ACM SIGGRAPH 2000 (July 2000), Computer Graphics Proceedings, Annual Conference Series, pp. 489--498. 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {TPSK11} Tompkin J., Pece F., Subr K., Kautz J.: Towards moment imagery: Automatic cinemagraphs. Visual Media Production, Conference for 0 (2011), 87--93. 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {YL12} Yeh M.-C., Li P.-Y.: A tool for automatic cinemagraphs. In Proceedings of the 20th ACM international conference on Multimedia (2012), MM '12, pp. 1259--1260. 1 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Automatic cinemagraph portraits

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image Guide Proceedings
        EGSR '13: Proceedings of the Eurographics Symposium on Rendering
        June 2013
        167 pages

        Publisher

        Eurographics Association

        Goslar, Germany

        Publication History

        • Published: 19 June 2013

        Qualifiers

        • research-article