skip to main content
article

Projective Blue-Noise Sampling

Published:01 February 2016Publication History
Skip Abstract Section

Abstract

We propose projective blue-noise patterns that retain their blue-noise characteristics when undergoing one or multiple projections onto lower dimensional subspaces. These patterns are produced by extending existing methods, such as dart throwing and Lloyd relaxation, and have a range of applications. For numerical integration, our patterns often outperform state-of-the-art stochastic and low-discrepancy patterns, which have been specifically designed only for this purpose. For image reconstruction, our method outperforms traditional blue-noise sampling when the variation in the signal is concentrated along one dimension. Finally, we use our patterns to distribute primitives uniformly in 3D space such that their 2D projections retain a blue-noise distribution.

References

  1. {BSD09}¿ Balzer M., Schlömer T., Deussen O.: Capacity-constrained point distributions: A variant of Lloyd's method. ACM Transactions on Graphics Volume 28, Issue 3 2009, 86:1-86:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {Coo86}¿ Cook R. L.: Stochastic sampling in computer graphics. ACM Transactions on Graphics Volume 5, Issue 1 1986, pp.51-72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {CP76}¿ Cranley R., Patterson T.: Randomization of number theoretic methods for multiple integration. SIAM Journal of Numerical Analysis Volume 13, Issue 6 1976, pp.904-914.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {CSW94}¿ Chiu K., Shirley P., Wang C.: Multi-jittered sampling. In Graphics Gems IV San Diego, CA, USA, 1994, Academic Press, Professional, Inc., pp. pp.370-374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {CYC*12}¿ Chen Z., Yuan Z., Choi Y.-K., Liu L., Wang W.: Variational blue noise sampling. IEEE Transactions on Visualization and Computer Graphics Volume 18, Issue 10 2012, pp.1784-1796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {Dev86}¿ Devroye L.: Non-Uniform Random Variate Generation. Springer-Verlag, New York, 1986.Google ScholarGoogle Scholar
  7. {dGBOD12}¿ <familyNamePrefix>de</familyNamePrefix>Goes F., Breeden K., Ostromoukhov V., Desbrun M.: Blue noise through optimal transport. ACM Transactions on Graphics Volume 31, Issue 6 2012, pp.171:1-171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {DW85}¿ Dippé M. A., Wold E. H.: Antialiasing through stochastic sampling. ACM SIGGRAPH Computer Graphics Volume 19, Issue 3 1985, pp.69-78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {ELPZ97}¿ Eldar Y., Lindenbaum M., Porat M., Zeevi Y. Y.: The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing Volume 6, Issue 9 1997, pp.1305-1315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {HHD03}¿ Hiller S., Hellwig H., Deussen O.: Beyond stippling-Methods for distributing objects in the plane. In Proceedings of Eurographics Granada, 2003, vol. 22, pp. pp.515-522.Google ScholarGoogle ScholarCross RefCross Ref
  11. {KCODL06}¿ Kopf J., Cohen-Or D., Deussen O., Lischinski D.: Recursive Wang tiles for real-time blue noise New York, NY, USA, 2006, SIGGRAPH '06, ACM 25, pp.509-518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {Ken13}¿ Kensler A.: Correlated multi-jittered sampling. Pixar Technical Memo 13-01, 2013.Google ScholarGoogle Scholar
  13. {KK02}¿ Kollig T., Keller A.: Efficient multidimensional sampling. In Proceedings of Eurographics Saarbrücken, 2002, vol. 21, pp. pp.557-563.Google ScholarGoogle ScholarCross RefCross Ref
  14. {KPR12}¿ Keller A., Premoze S., Raab M.: Advanced quasi Monte Carlo methods for image synthesis. In ACM SIGGRAPH 2012 Courses2012, pp. pp.21:1-21:46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {KZ77}¿ Korkin A., Zolotarev G.: Sur les formes quadratiques positives. Mathematische Annalen Volume 11 1877, pp.242-292.Google ScholarGoogle ScholarCross RefCross Ref
  16. {LD06}¿ Lagae A., Dutré P.: Poisson sphere distributions. In Proceedings of Vision, Modeling, and Visualization 2006 Aachen, November 2006, pp. pp.373-379.Google ScholarGoogle Scholar
  17. {LD08}¿ Lagae A., Dutré P.: A comparison of methods for generating Poisson disk distributions. Computer Graphics ForumVolume 27, Issue 1 2008, pp.114-129.Google ScholarGoogle ScholarCross RefCross Ref
  18. {Llo82}¿ Lloyd S.: Least squares quantization in PCM. IEEE Transactions on Information Theory Volume 28, Issue 2 1982, pp.129-137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {LWSF10}¿ Li H., Wei L.-Y., Sander P. V., Fu C.-W.: Anisotropic blue noise sampling. In Proceedings of SIGGRAPH Los Angeles, 2010, vol. 29, ACM, p. pp.167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {MBR*13}¿ Marques R., Bouville C., Ribardiere M., Santos L. P., Bouatouch K.: Spherical Fibonacci point sets for illumination integrals. Computer Graphics Forum Volume 32, Issue 8 2013, pp.134-143.Google ScholarGoogle Scholar
  21. {MF92}¿ McCool M., Fiume E.: Hierarchical Poisson disk sampling distributions. In Proceedings of GI Vancouver, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. {Mit87}¿ Mitchell D. P.: Generating antialiased images at low sampling densities. SIGGRAPH Computer Graphics Volume 21, Issue 4 1987, pp.65-72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. {Mit91}¿ Mitchell D. P.: Spectrally optimal sampling for distribution ray tracing. ACM SIGGRAPH Computer Graphics Volume 25, Issue 4 1991, pp.157-164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {Mit92}¿ Mitchell D.: Ray tracing and irregularities of distribution. In Proceedings of EGWR Pisa, 1992, pp. pp.61-69.Google ScholarGoogle Scholar
  25. {MP09}¿ Mitra N. J., Pauly M.: Shadow art. In Proceedings of SIGGRAPH New Orleans, 2009, vol. 28, pp. 156:1-156:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. {ODJ04}¿ Ostromoukhov V., Donohue C., Jodoin P.-M.: Fast hierarchical importance sampling with blue noise properties. In Proceedings of SIGGRAPH Los Angeles, 2004, vol. 23, pp. pp.488-495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {PH10}¿ Pharr M., Humphreys G.: Physically Based Rendering: From Theory to Implementation San Francisco, CA, USA, 2010, Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. {RAMN12}¿ Ramamoorthi R., Anderson J., Meyer M., Nowrouzezahrai D.: A theory of Monte Carlo visibility sampling. ACM Transactions on Graphics Volume 31, Issue 5 2012, 121:1-121:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. {RBGP06}¿ Romero V. J., Burkardt J. V., Gunzburger M. D., Peterson J. S.: Initial evaluation of pure and Latinized centroidal Voronoi tessellation for non-uniform statistical sampling. Rel. Eng. & Sys. Safety Volume 91, Issue 10 2006, pp.1266-1280.Google ScholarGoogle ScholarCross RefCross Ref
  30. {RRS13}¿ Reinert B., Ritschel T., Seidel H.-P.: Interactive by-example design of artistic packing layouts. In Proceedings of SIGGRAPH Asia Hong Kong, 2013, vol. 32, p. pp.218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {SGB07}¿ Saka Y., Gunzburger M., Burkhardt J.: Latinized, improved LHS, and CVT point sets in hypercubes. International Journal of Numerical Analysis and Modeling Volume 4, Issue 3-4 2007, pp.729-743.Google ScholarGoogle Scholar
  32. {SHD11}¿ Schlömer T., Heck D., Deussen O.: Farthest-point optimized point sets with maximized minimum distance. In Proceedings of HPG Vancouver, 2011, pp. pp.135-142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. {Shi91}¿ Shirley P.: Discrepancy as a quality measure for sample distributions. In Proceedings of Eurographics Vienna, 1991, vol. 91, pp. pp.183-194.Google ScholarGoogle Scholar
  34. {Sob94}¿ Sobol I. M.: A Primer for the Monte Carlo Method 1st edition. Boca Raton, CRC Press, Florida, May 1994.Google ScholarGoogle Scholar
  35. {Uli87}¿ Ulichney R.: Digital Halftoning. MIT Press, Cambridge, MA, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. {Yel83}¿ Yellott J.: Spectral consequences of photoreceptor sampling in the Rhesus retina. Science Volume 221, Issue 4608 1983, pp.382-385.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access