skip to main content
article

A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions

Published:01 May 2012Publication History
Skip Abstract Section

Abstract

We provide a simple algorithm and data structures for d-dimensional unbiased maximal Poisson-disk sampling. We use an order of magnitude less memory and time than the alternatives. Our results become more favorable as the dimension increases. This allows us to produce bigger samplings. Domains may be non-convex with holes. The generated point cloud is maximal up to round-off error. The serial algorithm is provably bias-free. For an output sampling of size n in fixed dimension d, we use a linear memory budget and empirical θ(n) runtime. No known methods scale well with dimension, due to the “curse of dimensionality.” The serial algorithm is practical in dimensions up to 5, and has been demonstrated in 6d. We have efficient GPU implementations in 2d and 3d. The algorithm proceeds through a finite sequence of uniform grids. The grids guide the dart throwing and track the remaining disk-free area. The top-level grid provides an efficient way to test if a candidate dart is disk-free. Our uniform grids are like quadtrees, except we delay splits and refine all leaves at once. Since the quadtree is flat it can be represented using very little memory: we just need the indices of the active leaves and a global level. Also it is very simple to sample from leaves with uniform probability. © 2012 Wiley Periodicals, Inc.

References

  1. Attali D., Boissonnat J.-D.: A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces. Discrete & Computational Geometry 31, 3 (Feb. 2004), 369––384. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Babuška I., Nobile F., Tempone R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Review 52, 2 (2010), 317–355. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bridson R.: Fast Poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH Sketches (2007), p. 22. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bolander J. E., Saito S.: Fracture analyses using spring networks with random geometry. Engineering Fracture Mechanics 61, 5–6 (1998), 569–591. 2Google ScholarGoogle ScholarCross RefCross Ref
  5. Bowers J., Wang R., Wei L.-Y., Maletz D.: Parallel Poisson disk sampling with spectrum analysis on surfaces. ACM Transactions on Graphics 29 (Dec. 2010), 166:1–166:10. 3, 4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cook R. L.: Stochastic sampling in computer graphics. ACM Transactions on Graphics 5, 1 (Jan. 1986), 51–72. 3, 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cohen M. F., Shade J., Hiller S., Deussen O.: Wang tiles for image and texture generation. ACM Transactions on Graphics 22, 3 (July 2003), 287–294. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dunbar D., Humphreys G.: A spatial data structure for fast Poisson-disk sample generation. ACM Transactions on Graphics 25, 3 (July 2006), 503–508. 3, 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dippé M. A. Z., Wold E. H.: Antialiasing through stochastic sampling. In Computer Graphics (Proceedings of SIGGRAPH 85) (July 1985), pp. 69–78. 3, 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dickman R., Wang J.-S., Jensen I.: Random sequential adsorption: Series and virial expansions. Journal of Chemical Physics 94 (1991), 8252–8257. 2Google ScholarGoogle ScholarCross RefCross Ref
  11. Ebeida M. S., Mitchell S. A.: Uniform random Voronoi meshes. In 20th International Meshing Roundtable (2011), pp. 258–275. 2Google ScholarGoogle ScholarCross RefCross Ref
  12. Ebeida M. S., Mitchell S. A., Davidson A. A., Patney A., Knupp P. M., Owens J. D.: Efficient and good Delaunay meshes from random points. Computer-Aided Design 43, 11 (2011), 1506–1515. Solid and Physical Modeling. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ebeida M. S., Patney A., Mitchell S. A., Davidson A., Knupp P. M., Owens J. D.: Efficient maximal Poisson-disk sampling. ACM Transactions on Graphics 30, 4 (July 2011), 49:1–49:12. 4, 5, 7, 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gamito M. N., Maddock S. C.: Accurate multidimensional Poisson-disk sampling. ACM Transactions on Graphics 29, 1 (Dec. 2009), 8:1–8:19. 3, 4, 5, 7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jirásek M., Bazant Z. P.: Particle model for quasibrittle fracture and its application to sea ice. Journal of Engineering Mechanics 121 (1995), 1016–1025. 2Google ScholarGoogle ScholarCross RefCross Ref
  16. Jones T. R., Karger D. R.: Linear-time Poisson-disk patterns. Journal of Graphics, GPU, & Game Tools (to appear) (2011). arXiv:1107.3013v1. 4, 5Google ScholarGoogle Scholar
  17. Jones T. R.: Efficient generation of Poisson-disk sampling patterns. Journal of Graphics Tools 11, 2 (2006), 27–36. 3, 5Google ScholarGoogle ScholarCross RefCross Ref
  18. Lagae A., Dutré P.: A procedural object distribution function. ACM Transactions on Graphics 24, 4 (Oct. 2005), 1442–1461. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mitchell D. P.: Generating antialiased images at low sampling densities. In Computer Graphics (Proceedings of SIGGRAPH 87) (July 1987), pp. 65–72. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Miller G. L., Talmor D., Teng S.-H., Walkington N. J., Wang H.: Control volume meshes using sphere packing: Generation, refinement and coarsening. In Fifth International Meshing Roundtable (1996), pp. 47–61. 2Google ScholarGoogle Scholar
  21. Ostromoukhov V., Donohue C., Jodoin P.-M.: Fast hierarchical importance sampling with blue noise properties. ACM Transactions on Graphics 23, 3 (Aug. 2004), 488–495. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ostromoukhov V.: Sampling with polyominoes. ACM Transactions on Graphics 26, 3 (July 2007), 78:1–78:6. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pharr M., Humphreys G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Schlömer T.: PSA point set analysis., 2011. 3, 11Google ScholarGoogle Scholar
  25. White K. B., Cline D., Egbert P. K.: Poisson disk point sets by hierarchical dart throwing. In RT '07: Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing (Sept. 2007), pp. 129–132. 3, 4, 5, 6, 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wei L.-Y.: Parallel Poisson disk sampling. ACM Transactions on Graphics 27, 3 (Aug. 2008), 20:1–20:9. 3, 4, 5, 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Witteveen J. A., Iaccarino G.: Simplex elements stochastic collocation in higher-dimensional probability spaces. In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2010–2924 (2010). 2Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access