Abstract
We present a method for simulating water and smoke on an unrestricted octree data structure exploiting mesh refinement techniques to capture the small scale visual detail. We propose a new technique for discretizing the Poisson equation on this octree grid. The resulting linear system is symmetric positive definite enabling the use of fast solution methods such as preconditioned conjugate gradients, whereas the standard approximation to the Poisson equation on an octree grid results in a non-symmetric linear system which is more computationally challenging to invert. The semi-Lagrangian characteristic tracing technique is used to advect the velocity, smoke density, and even the level set making implementation on an octree straightforward. In the case of smoke, we have multiple refinement criteria including object boundaries, optical depth, and vorticity concentration. In the case of water, we refine near the interface as determined by the zero isocontour of the level set function.
Supplemental Material
Available for Download
- ALMGREN, A., BELL, J., COLELLA, P., HOWELL, L., AND WELCOME, M. 1998. A conservative adaptive projection method for the variable density incompressible navier-stokes equations. J. Comput. Phys. 142, 1--46. Google Scholar
Digital Library
- BERGER, M., AND COLELLA, P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64--84. Google Scholar
Digital Library
- BERGER, M., AND OLIGER, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484--512.Google Scholar
Cross Ref
- CARLSON, M., MUCHA, P., VAN HORN III, R., AND TURK, G. 2002. Melting and flowing. In ACM SIGGRAPH Symposium on Computer Animation, 167--174. Google Scholar
Digital Library
- CHEN, J., AND LOBO, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Computer Graphics and Image Processing 57, 107--116. Google Scholar
Digital Library
- CHEN, S., MERRIMAN, B., OSHER, S., AND SMEREKA, P. 1997. A simple level set method for solving stefan problems. 8--29. Google Scholar
Digital Library
- DAY, M., COLELLA, P., LIJEWSKI, M., RENDLEMAN, C., AND MARCUS, D. 1998. Embedded boundary algorithms for solving the poisson equation on complex domains. Tech. rep., Lawrence Berkeley National Laboratory (LBNL-41811).Google Scholar
- ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 83--116. Google Scholar
Digital Library
- ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google Scholar
Digital Library
- ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2004. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures, (in press).Google Scholar
- FEDKIW, R., STAM, J., AND JENSEN, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google Scholar
Digital Library
- FELDMAN, B. E., O'BRIEN, J. F., AND ARIKAN, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708--715. Google Scholar
Digital Library
- FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23--30. Google Scholar
Digital Library
- FOSTER, N., AND METAXAS, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471--483. Google Scholar
Digital Library
- FOSTER, N., AND METAXAS, D. 1997. Controlling fluid animation. In Computer Graphics International 1997, 178--188. Google Scholar
Digital Library
- FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181--188. Google Scholar
Digital Library
- FRISKEN, S., PERRY, R., ROCKWOOD, A., AND JONES, T. 2000. Adaptively sampled distance fields: a general representation of shape for computer graphics. In Proc. SIGGRAPH 2000, 249--254. Google Scholar
Digital Library
- GIBOU, F., FEDKIW, R., CHENG, L.-T., AND KANG, M. 2002. A second--order--accurate symmetric discretization of the poisson equation on irregular domains. 205--227. Google Scholar
Digital Library
- HAM, F., LIEN, F., AND STRONG, A. 2002. A fully conservative secondorder finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 117, 117--133. Google Scholar
Digital Library
- HARLOW, F., AND WELCH, J. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182--2189.Google Scholar
Cross Ref
- HONG, J.-M., AND KIM, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253--262.Google Scholar
Cross Ref
- JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual contouring of Hermite data. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 339--346. Google Scholar
Digital Library
- KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Computer Graphics (Proc. of SIGGRAPH 90), vol. 24, 49--57. Google Scholar
Digital Library
- LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of natural flames. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729--735. Google Scholar
Digital Library
- LEE, H., DESBRUN, M., AND SCHRODER, P. 2003. Progressive encoding of complex isosurfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 471--476. Google Scholar
Digital Library
- MIYAZAKI, R., DOBASHI, Y., AND NISHITA, T. 2002. Simulation of cumuliform clouds based on computational fluid dynamics. Proc. Eurographics 2002 Short Presentation, 405--410.Google Scholar
- MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154--159. Google Scholar
Digital Library
- NGUYEN, D., FEDKIW, R., AND JENSEN, H. 2002. Physically based modeling and animation of fire. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 29, 721--728. Google Scholar
Digital Library
- OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEIDEL, H. 2003. Multi-Level Partition of Unity Implicits. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 463--470. Google Scholar
Digital Library
- PERRY, R., AND FRISKEN, S. 2001. Kizamu: a system for sculpting digital characters. In Proc. SIGGRAPH 2001, vol. 20, 47--56. Google Scholar
Digital Library
- POPINET, S. 2003. Gerris: A tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comp. Phys. 190, 572--600. Google Scholar
Digital Library
- PREMOZE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND WHITAKER, R. 2003. Particle-based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401--410.Google Scholar
Cross Ref
- RASMUSSEN, N., NGUYEN, D., GEIGER, W., AND FEDKIW, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703--707. Google Scholar
Digital Library
- ROUSSEL, O., SCHNEIDER, K., TSIGULIN, A., AND BOCKHORN, H. 2003. A conservative fully adaptive multiresolution algorithm for parabolic pdes. J. Comput. Phys. 188, 493--523. Google Scholar
Digital Library
- SAAD, Y. 1996. Iterative methods for sparse linear systems. PWS Publishing. New York, NY. Google Scholar
Digital Library
- SAMET, H. 1989. The Design and Analysis of Spatial Data Structures. Addison-Wesley, New York. Google Scholar
Digital Library
- SETHIAN, J. 1996. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591--1595.Google Scholar
Cross Ref
- SOCHNIKOV, V., AND EFRIMA, S. 2003. Level set calculations of the evolution of boundaries on a dynamically adaptive grid. Int. J. Num. Methods in Eng. 56, 1913--1929.Google Scholar
Cross Ref
- STAM, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google Scholar
Digital Library
- STAM, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 724--731. Google Scholar
Digital Library
- STRAIN, J. 1999. Fast tree-based redistancing for level set computations. J. Comput. Phys. 152, 664--686. Google Scholar
Digital Library
- STRAIN, J. 1999. Tree methods for moving interfaces. J. Comput. Phys. 151, 616--648. Google Scholar
Digital Library
- STRAIN, J. 2000. A fast modular semi-lagrangian method for moving interfaces. J. Comput. Phys. 161, 512--536. Google Scholar
Digital Library
- SUSSMAN, M., ALMGREN, A., BELL, J., COLELLA, P., HOWELL, L., AND WELCOME, M. 1999. An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148, 81--124. Google Scholar
Digital Library
- SUSSMAN, M. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187, 110--136. Google Scholar
Digital Library
- TAKAHASHI, T., FUJII, H., KUNIMATSU, A., HIWADA, K., SAITO, T., TANAKA, K., AND UEKI, H. 2003. Realistic animation of fluid with splash and foam. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 391--400.Google Scholar
Cross Ref
- TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 716--723. Google Scholar
Digital Library
- TSITSIKLIS, J. 1995. Efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control 40, 1528--1538.Google Scholar
Cross Ref
- WESTERMANN, R., KOBBELT, L., AND ERTL, T. 1999. Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Vis. Comput. 15, 2, 100--111.Google Scholar
Cross Ref
- YNGVE, G., O'BRIEN, J., AND HODGINS, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29--36. Google Scholar
Digital Library
Index Terms
Simulating water and smoke with an octree data structure
Recommendations
Simulating water and smoke with an octree data structure
SIGGRAPH '04: ACM SIGGRAPH 2004 PapersWe present a method for simulating water and smoke on an unrestricted octree data structure exploiting mesh refinement techniques to capture the small scale visual detail. We propose a new technique for discretizing the Poisson equation on this octree ...
Automatic off-body overset adaptive Cartesian mesh method based on an octree approach
This paper describes a method for generating adaptive structured Cartesian grids within a near-body/off-body mesh partitioning framework for the flow simulation around complex geometries. The off-body Cartesian mesh generation derives from an octree ...
A vortex particle method for smoke, water and explosions
SIGGRAPH '05: ACM SIGGRAPH 2005 PapersVorticity confinement reintroduces the small scale detail lost when using efficient semi-Lagrangian schemes for simulating smoke and fire. However, it only amplifies the existing vorticity, and thus can be insufficient for highly turbulent effects such ...





Comments