skip to main content
article

Fair morse functions for extracting the topological structure of a surface mesh

Published:01 August 2004Publication History
Skip Abstract Section

Abstract

Morse theory reveals the topological structure of a shape based on the critical points of a real function over the shape. A poor choice of this real function can lead to a complex configuration of an unnecessarily high number of critical points. This paper solves a relaxed form of Laplace's equation to find a "fair" Morse function with a user-controlled number and configuration of critical points. When the number is minimal, the resulting Morse complex cuts the shape into a disk. Specifying additional critical points at surface features yields a base domain that better represents the geometry and shares the same topology as the original mesh, and can also cluster a mesh into approximately developable patches. We make Morse theory on meshes more robust with teflon saddles and flat edge collapses, and devise a new "intermediate value propagation" multigrid solver for finding fair Morse functions that runs in provably linear time.

Skip Supplemental Material Section

Supplemental Material

References

  1. AKSOYLU, B., KHODAKOVSKY, A., AND SCHROEDER, P. 2003. Multilevel solvers for unstructured surface meshes. Siam J. Sci. Comput. (in review). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. AXEN, U., AND EDELSBRUNNER, H. 1998. Auditory morse analysis of triangulated manifolds. In Mathematical Visualization, H.-C. Hege and K. Polthier, Eds. Springer-Verlag, Heidelberg, 223--236.Google ScholarGoogle Scholar
  3. BAJAJ, C. L., AND SCHIKORE, D. R. 1998. Topology preserving data simplification with error bounds. Computers and Graphics 22, 1, 3--12.Google ScholarGoogle ScholarCross RefCross Ref
  4. BAJAJ, C. L., PASCUCCI, V., AND SCHIKORE, D. 1998. Visualization of scalar topology for structural enhancement. IEEE Visualization '98, 51--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. BANCHOFF, T. F. 1970. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly 77, 475--485.Google ScholarGoogle ScholarCross RefCross Ref
  6. BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003. Sparse matrix solvers on the GPU: Conjugate gradients and multigrid. ACM Trans. on Graphics 22, 3 (July), 912--924. (Proc. SIGGRAPH 2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. BREMER, P.-T., EDELSBRUNNER, H., HAMANN, B., AND PASCUCCI, V. 2003. A multi-resolution data structure for two-dimensional Morse-Smale functions. Proc. Visualization 03, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. CHUNG, F. R. K. 1997. Spectral Graph Theory. American Mathematical Society.Google ScholarGoogle Scholar
  9. DE VERDIÈRE, E. C., AND LAZARUS, F. 2002. Optimal system of loops on an orientable surface. Proc. Foundations of CS, 627--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. DESBRUN, M., MEYER, M., SCHROEDER, P., AND BARR, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH 99, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21 (Sep.), 209--218. (Proc. Eurographics 2002).Google ScholarGoogle ScholarCross RefCross Ref
  12. DEY, T. K., AND SCHIPPER, H. 1995. A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discrete and Computational Geometry 14, 93--110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. DEY, T. K., EDELSBRUNNER, H., AND GUHA, S. 1999. Computational topology. In Advances in Discrete and Computational Geometry, B. Chazelle, J. Goodman, and R. Pollack, Eds. Providence.Google ScholarGoogle Scholar
  14. DEY, T. K., EDELSBRUNNER, H., GUHA, S., AND NEKHAYEV, D. 1999. Topology preserving edge contraction. Publ. Inst. Math. (Beograd) (N.S.) 66, 23--45. Also Tech Report RGI-Tech-98-018, Raindrop Geomagic Inc., 1998.Google ScholarGoogle Scholar
  15. DOBKIN, D., AND KIRKAPATRICK, D. 1985. A linear algorithm for determining the separation of convex polyghedra. J. of Algorithms 6, 381--392.Google ScholarGoogle ScholarCross RefCross Ref
  16. EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN, A. 2002. Topological persistence and simplification. Discrete and Computational Geometry 28, 4, 511--533.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. EDELBRUNNER, H., HARER, J., NATARAJAN, V., AND PASCUCCI, V. 2003. Morse-Smale complexes for piecewise linear 3-manifolds. Proc. Symp. on Computational Geometry, 361--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. EDELSBRUNNER, H., HARER, J., AND ZOMORODIAN, A. 2003. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry 30, 1, 87--107.Google ScholarGoogle ScholarCross RefCross Ref
  19. ERICKSON, J., AND HAR-PELED, S. 2002. Optimally cutting a surface into a disk. Proc. ACM Symp. on Comp. Geom., 244--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. FIRBY, P., AND GARDINER, C. 1991. Surface Topology, 2nd ed. Ellis Horwood.Google ScholarGoogle Scholar
  21. FLOATER, M. 1997. Parameterization and smooth approximation of surface triangulations. Computer-Aided Geometric Design 14, 4, 231--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. FLOATER, M. S. 2003. Mean value coordinates. Computer-Aided Geometric Design 20, 1 (Mar.), 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using quadric error metrics. Proc. SIGGRAPH 97, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images. ACM Trans. on Graphics (Proc. SIGGRAPH 2002) 21, 3 (July), 355--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. GUSKOV, I., AND WOOD, Z. 2001. Topological noise removal. Proc. Graphics Interface, 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. HACKBUSCH, W. 1985. Multi-Grid Methods and Applications. Springer-Verlag.Google ScholarGoogle Scholar
  27. HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. Proc. SIGGRAPH 2001, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. KARTASHEVA, E. 1999. The algorithm for automatic cutting of three-dimensional polyhedrons of h-genus. Proc. Shape Modeling Intl. 99, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. Proc. SIGGRAPH 98, 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. LAZARUS, F., POCCHIOLA, M., VEGTER, G., AND VERROUST, A. 2001. Computing a canonical polygonal schema of an orientable triangulated surface. ACM Symp. on Comp. Geom., 80--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. LEE, A. W. F., SWELDENS, W., SCHROEDER, P., COWSAR, L., AND DOBKIN, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. Proc. SIGGRAPH 98, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. LEE, A. W. F., DOBKIN, D., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution mesh morphing. Proc. SIGGRAPH 99, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. MILNOR, J. 1963. Morse Theory. Princeton Univ. Press.Google ScholarGoogle Scholar
  34. MISCHAIKOW, K., AND MROZEK, M. 2002. Conley index. In Handbook of dynamical systems, Vol. 2. North-Holland, 393--460.Google ScholarGoogle Scholar
  35. MISCHAIKOW, K. 1995. Conley index theory. In Dynamical systems (Montecatini Terme, 1994), vol. 1609 of Lecture Notes in Math. Springer, 119--207.Google ScholarGoogle Scholar
  36. NACKMAN, L. 1984. Two-dimensional critical point configuration graphs. IEEE Trans. PAMI 6, 442--450.Google ScholarGoogle Scholar
  37. PINKALL, U., AND POLTHIER, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  38. PIPONI, G., AND BORSHUKOV, D. 2000. Seamless texture mapping of subdivision surfaces by model pelting and texture blending. Proc. SIGGRAPH 2000, 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. RAY, N., AND LEVY, B. 2003. Hierarchical least squares conformal map. Proc. Pacific Graphics, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND HOPPE, H. 2003. Multi-chart geometry images. Proc. Symp. Geom. Proc., 146--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. SHEFFER, A., AND DE STURLER, E. 2002. Surface parameterization for meshing by triangulation flattening. ACM Trans. on Graphics 21, 4, 874--890. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. SHEFFER, A., AND HART, J. C. 2002. Seamster: inconspicuous low-distortion texture seam layout. Proc. Visualization '02, 291--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. SHINAGAWA, Y., KUNII, T. L., AND KERGOSIEN, Y. L. 1991. Surface coding based on morse theory. IEEE Computer Graphics & Applications 11, 5, 66--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. STANDER, B. T., AND HART, J. C. 1997. Guaranteeing the topology of an implicit surface polygonization for interactive modeling. Proc. SIGGRAPH 97, 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. STEINER, D., AND FISCHER, A. 2001. Topology recognition of 3D closed freeform objects based on topological graphs. Proc. Pacific Graphics (Oct.), 82--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. TAUBIN, G. 1995. A signal processing approach to fair surface design. Proc. SIGGRAPH 95, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. VEGTER, G. 1997. Computational topology. In Handbook of Discrete and Computational Geometry. CRC Press, 517--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2003. Feature-based surface parameterization and texture mapping. Tech. Rep. GVU 03--29, Georgia Tech.Google ScholarGoogle Scholar

Index Terms

(auto-classified)
  1. Fair morse functions for extracting the topological structure of a surface mesh

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!