Abstract
Morse theory reveals the topological structure of a shape based on the critical points of a real function over the shape. A poor choice of this real function can lead to a complex configuration of an unnecessarily high number of critical points. This paper solves a relaxed form of Laplace's equation to find a "fair" Morse function with a user-controlled number and configuration of critical points. When the number is minimal, the resulting Morse complex cuts the shape into a disk. Specifying additional critical points at surface features yields a base domain that better represents the geometry and shares the same topology as the original mesh, and can also cluster a mesh into approximately developable patches. We make Morse theory on meshes more robust with teflon saddles and flat edge collapses, and devise a new "intermediate value propagation" multigrid solver for finding fair Morse functions that runs in provably linear time.
Supplemental Material
Available for Download
- AKSOYLU, B., KHODAKOVSKY, A., AND SCHROEDER, P. 2003. Multilevel solvers for unstructured surface meshes. Siam J. Sci. Comput. (in review). Google Scholar
Digital Library
- AXEN, U., AND EDELSBRUNNER, H. 1998. Auditory morse analysis of triangulated manifolds. In Mathematical Visualization, H.-C. Hege and K. Polthier, Eds. Springer-Verlag, Heidelberg, 223--236.Google Scholar
- BAJAJ, C. L., AND SCHIKORE, D. R. 1998. Topology preserving data simplification with error bounds. Computers and Graphics 22, 1, 3--12.Google Scholar
Cross Ref
- BAJAJ, C. L., PASCUCCI, V., AND SCHIKORE, D. 1998. Visualization of scalar topology for structural enhancement. IEEE Visualization '98, 51--58. Google Scholar
Digital Library
- BANCHOFF, T. F. 1970. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly 77, 475--485.Google Scholar
Cross Ref
- BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003. Sparse matrix solvers on the GPU: Conjugate gradients and multigrid. ACM Trans. on Graphics 22, 3 (July), 912--924. (Proc. SIGGRAPH 2003). Google Scholar
Digital Library
- BREMER, P.-T., EDELSBRUNNER, H., HAMANN, B., AND PASCUCCI, V. 2003. A multi-resolution data structure for two-dimensional Morse-Smale functions. Proc. Visualization 03, 139--146. Google Scholar
Digital Library
- CHUNG, F. R. K. 1997. Spectral Graph Theory. American Mathematical Society.Google Scholar
- DE VERDIÈRE, E. C., AND LAZARUS, F. 2002. Optimal system of loops on an orientable surface. Proc. Foundations of CS, 627--636. Google Scholar
Digital Library
- DESBRUN, M., MEYER, M., SCHROEDER, P., AND BARR, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH 99, 317--324. Google Scholar
Digital Library
- DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21 (Sep.), 209--218. (Proc. Eurographics 2002).Google Scholar
Cross Ref
- DEY, T. K., AND SCHIPPER, H. 1995. A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discrete and Computational Geometry 14, 93--110.Google Scholar
Digital Library
- DEY, T. K., EDELSBRUNNER, H., AND GUHA, S. 1999. Computational topology. In Advances in Discrete and Computational Geometry, B. Chazelle, J. Goodman, and R. Pollack, Eds. Providence.Google Scholar
- DEY, T. K., EDELSBRUNNER, H., GUHA, S., AND NEKHAYEV, D. 1999. Topology preserving edge contraction. Publ. Inst. Math. (Beograd) (N.S.) 66, 23--45. Also Tech Report RGI-Tech-98-018, Raindrop Geomagic Inc., 1998.Google Scholar
- DOBKIN, D., AND KIRKAPATRICK, D. 1985. A linear algorithm for determining the separation of convex polyghedra. J. of Algorithms 6, 381--392.Google Scholar
Cross Ref
- EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN, A. 2002. Topological persistence and simplification. Discrete and Computational Geometry 28, 4, 511--533.Google Scholar
Digital Library
- EDELBRUNNER, H., HARER, J., NATARAJAN, V., AND PASCUCCI, V. 2003. Morse-Smale complexes for piecewise linear 3-manifolds. Proc. Symp. on Computational Geometry, 361--370. Google Scholar
Digital Library
- EDELSBRUNNER, H., HARER, J., AND ZOMORODIAN, A. 2003. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry 30, 1, 87--107.Google Scholar
Cross Ref
- ERICKSON, J., AND HAR-PELED, S. 2002. Optimally cutting a surface into a disk. Proc. ACM Symp. on Comp. Geom., 244--253. Google Scholar
Digital Library
- FIRBY, P., AND GARDINER, C. 1991. Surface Topology, 2nd ed. Ellis Horwood.Google Scholar
- FLOATER, M. 1997. Parameterization and smooth approximation of surface triangulations. Computer-Aided Geometric Design 14, 4, 231--250. Google Scholar
Digital Library
- FLOATER, M. S. 2003. Mean value coordinates. Computer-Aided Geometric Design 20, 1 (Mar.), 19--27. Google Scholar
Digital Library
- GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using quadric error metrics. Proc. SIGGRAPH 97, 209--216. Google Scholar
Digital Library
- GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images. ACM Trans. on Graphics (Proc. SIGGRAPH 2002) 21, 3 (July), 355--361. Google Scholar
Digital Library
- GUSKOV, I., AND WOOD, Z. 2001. Topological noise removal. Proc. Graphics Interface, 19--26. Google Scholar
Digital Library
- HACKBUSCH, W. 1985. Multi-Grid Methods and Applications. Springer-Verlag.Google Scholar
- HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. Proc. SIGGRAPH 2001, 203--212. Google Scholar
Digital Library
- KARTASHEVA, E. 1999. The algorithm for automatic cutting of three-dimensional polyhedrons of h-genus. Proc. Shape Modeling Intl. 99, 26--33. Google Scholar
Digital Library
- KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. Proc. SIGGRAPH 98, 105--114. Google Scholar
Digital Library
- LAZARUS, F., POCCHIOLA, M., VEGTER, G., AND VERROUST, A. 2001. Computing a canonical polygonal schema of an orientable triangulated surface. ACM Symp. on Comp. Geom., 80--89. Google Scholar
Digital Library
- LEE, A. W. F., SWELDENS, W., SCHROEDER, P., COWSAR, L., AND DOBKIN, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. Proc. SIGGRAPH 98, 95--104. Google Scholar
Digital Library
- LEE, A. W. F., DOBKIN, D., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution mesh morphing. Proc. SIGGRAPH 99, 343--350. Google Scholar
Digital Library
- MILNOR, J. 1963. Morse Theory. Princeton Univ. Press.Google Scholar
- MISCHAIKOW, K., AND MROZEK, M. 2002. Conley index. In Handbook of dynamical systems, Vol. 2. North-Holland, 393--460.Google Scholar
- MISCHAIKOW, K. 1995. Conley index theory. In Dynamical systems (Montecatini Terme, 1994), vol. 1609 of Lecture Notes in Math. Springer, 119--207.Google Scholar
- NACKMAN, L. 1984. Two-dimensional critical point configuration graphs. IEEE Trans. PAMI 6, 442--450.Google Scholar
- PINKALL, U., AND POLTHIER, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15--36.Google Scholar
Cross Ref
- PIPONI, G., AND BORSHUKOV, D. 2000. Seamless texture mapping of subdivision surfaces by model pelting and texture blending. Proc. SIGGRAPH 2000, 471--478. Google Scholar
Digital Library
- RAY, N., AND LEVY, B. 2003. Hierarchical least squares conformal map. Proc. Pacific Graphics, 263--270. Google Scholar
Digital Library
- SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND HOPPE, H. 2003. Multi-chart geometry images. Proc. Symp. Geom. Proc., 146--155. Google Scholar
Digital Library
- SHEFFER, A., AND DE STURLER, E. 2002. Surface parameterization for meshing by triangulation flattening. ACM Trans. on Graphics 21, 4, 874--890. Google Scholar
Digital Library
- SHEFFER, A., AND HART, J. C. 2002. Seamster: inconspicuous low-distortion texture seam layout. Proc. Visualization '02, 291--298. Google Scholar
Digital Library
- SHINAGAWA, Y., KUNII, T. L., AND KERGOSIEN, Y. L. 1991. Surface coding based on morse theory. IEEE Computer Graphics & Applications 11, 5, 66--78. Google Scholar
Digital Library
- STANDER, B. T., AND HART, J. C. 1997. Guaranteeing the topology of an implicit surface polygonization for interactive modeling. Proc. SIGGRAPH 97, 279--286. Google Scholar
Digital Library
- STEINER, D., AND FISCHER, A. 2001. Topology recognition of 3D closed freeform objects based on topological graphs. Proc. Pacific Graphics (Oct.), 82--88. Google Scholar
Digital Library
- TAUBIN, G. 1995. A signal processing approach to fair surface design. Proc. SIGGRAPH 95, 351--358. Google Scholar
Digital Library
- VEGTER, G. 1997. Computational topology. In Handbook of Discrete and Computational Geometry. CRC Press, 517--536. Google Scholar
Digital Library
- ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2003. Feature-based surface parameterization and texture mapping. Tech. Rep. GVU 03--29, Georgia Tech.Google Scholar
Index Terms
(auto-classified)Fair morse functions for extracting the topological structure of a surface mesh
Recommendations
Fair morse functions for extracting the topological structure of a surface mesh
SIGGRAPH '04: ACM SIGGRAPH 2004 PapersMorse theory reveals the topological structure of a shape based on the critical points of a real function over the shape. A poor choice of this real function can lead to a complex configuration of an unnecessarily high number of critical points. This ...
A Topological Approach to Simplification of Three-Dimensional Scalar Functions
This paper describes an efficient combinatorial method for simplification of topological features in a 3D scalar function. The Morse-Smale complex, which provides a succinct representation of a function's associated gradient flow field, is used to ...






Comments