skip to main content
article

A procedural object distribution function

Published:01 October 2005Publication History
Skip Abstract Section

Abstract

In this article, we present a procedural object distribution function, a new texture basis function that distributes procedurally generated objects over a procedurally generated texture. The objects are distributed uniformly over the texture, and are guaranteed not to overlap. The scale, size, and orientation of the objects can be easily manipulated. The texture basis function is efficient to evaluate, and is suited for real-time applications. The new texturing primitive we present extends the range of textures that can be generated procedurally.The procedural object distribution function we propose is based on Poisson disk tiles and a direct stochastic tiling algorithm for Wang tiles. Poisson disk tiles are square tiles filled with a precomputed set of Poisson disk distributed points, inspired by Wang tiles. A single set of Poisson disk tiles enables the real-time generation of an infinite amount of Poisson disk distributions of arbitrary size. With the direct stochastic tiling algorithm, these Poisson disk distributions can be evaluated locally, at any position in the Euclidean plane.Poisson disk tiles and the direct stochastic tiling algorithm have many other applications in computer graphics. We briefly explore applications in object distribution, primitive distribution for illustration, and environment map sampling.

References

  1. Agarwal, S., Ramamoorthi, R., Belongie, S., and Jensen, H. W. 2003. Structured importance sampling of environment maps. ACM Trans. Graph. 22, 3, 605--612. Google ScholarGoogle Scholar
  2. Berger, R. 1966. The undecidability of the domino problem. Mem. Amer. Math. Soc. 66, 1--72.Google ScholarGoogle Scholar
  3. Cohen, J. and Debevec, P. 2001. LightGen, HDRShop plugin. Available online at http://www.ict.usc.edu/~jcohen/lightgen/lightgen.html.Google ScholarGoogle Scholar
  4. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. Graph. 287--294. Google ScholarGoogle Scholar
  5. Cook, R. L. 1986. Stochastic sampling in computer graphics. Comput. Graph. (Proceedings of ACM SIGGRAPH'86) 5, 1, 51--72. Google ScholarGoogle Scholar
  6. Culik, II, K. 1996. An aperiodic set of 13 Wang tiles. Disc. Math. 160, 1--3, 245--251. Google ScholarGoogle Scholar
  7. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In Proceedings of ACM SIGGRAPH'98, 275--286. Google ScholarGoogle Scholar
  8. Dippé, M. A. Z. and Wold, E. H. 1985. Antialiasing through stochastic sampling. Comput. Graph. (Proceedings of ACM SIGGRAPH'85) 19, 3, 69--78. Google ScholarGoogle Scholar
  9. Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. 2002. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann, San Francisco, CA. Google ScholarGoogle Scholar
  10. Gielis, J., Beirinckx, B., and Bastiaens, E. 2003. Superquadrics with rational and irrational symmetry. In Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, 262--265. Google ScholarGoogle Scholar
  11. Glassner, A. 1999. Andrew Glassner's Notebook: Recreational Computer Graphics. Morgan Kaufmann, San Fracisco, CA. Google ScholarGoogle Scholar
  12. Grünbaum, B. and Shepard, G. C. 1986. Tilings and Patterns. W. H. Freeman & Company, New York, NY. Google ScholarGoogle Scholar
  13. Hiller, S., Deussen, O., and Keller, A. 2001. Tiled blue noise samples. In Proceedings of Vision Modeling Visualization 2001. 265--272. Google ScholarGoogle Scholar
  14. Kaplan, C. S. and Salesin, D. H. 2000. Escherization. In Proceedings of ACM SIGGRAPH 2000. 499--510. Google ScholarGoogle Scholar
  15. Kari, J. 1996. A small aperiodic set of Wang tiles. Discr. Math. 160, 1--3, 259--264. Google ScholarGoogle Scholar
  16. Klassen, R. V. 2000. Filtered jitter. Comput. Graph. Forum 19, 4, 223--230.Google ScholarGoogle Scholar
  17. Kollig, T. and Keller, A. 2003. Efficient illumination by high dynamic range images. EGRW'03: Proceedings of the 14th Eurographics Workshop on Rendering. 45--50. Google ScholarGoogle Scholar
  18. Lagae, A. and Dutré, P. 2005. Template Poisson disk tiles. Tech. rep. CW413. Katholieke Universiteit Leuven, Departement Computerwetenschappen, Heverlee, Belgium.Google ScholarGoogle Scholar
  19. Lloyd, S. P. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theor. 28, 2, 129--137.Google ScholarGoogle Scholar
  20. McCool, M. and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proceedings of Graphics Interface'92. 94--105. Google ScholarGoogle Scholar
  21. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. Comput. Graph. (Proceedings of ACM SIGGRAPH'87) 21, 4, 65--72. Google ScholarGoogle Scholar
  22. Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. Comput. Graph. (Proceedings of ACM SIGGRAPH'91) 25, 4, 157--164. Google ScholarGoogle Scholar
  23. Neyret, F. and Cani, M.-P. 1999. Pattern-based texturing revisited. In Proceedings of ACM SIGGRAPH 1999. 235--242. Google ScholarGoogle Scholar
  24. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google ScholarGoogle Scholar
  25. Peachy, D. R. 1985. Solid texturing of complex surfaces. Comput. Graph. (Proceedings of ACM SIGGRAPH'85) 19, 3, 279--286. Google ScholarGoogle Scholar
  26. Penrose, R. 1974. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Applications 10, 266--271.Google ScholarGoogle Scholar
  27. Perlin, K. 1985. An image synthesizer. Comput. Graph. (Proceedings of ACM SIGGRAPH'85) 19, 3, 287--296. Google ScholarGoogle Scholar
  28. Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 681--682. Google ScholarGoogle Scholar
  29. Perlin, K. and Hoffert, E. M. 1989. Hypertexture. Comput. Graph. (Proceedings of ACM SIGGRAPH'89) 23, 3, 253--262. Google ScholarGoogle Scholar
  30. Secord, A., Heidrich, W., and Streit, L. 2002. Fast primitive distribution for illustration. EGRW '02: Proceedings of the 13th Eurographics Workshop on Rendering. 215--226. Google ScholarGoogle Scholar
  31. Shade, J., Cohen, M. F., and Mitchell, D. P. 2002. Tiling layered depth images. Tech. rep., University of Washington, Department of Computer Science and Engineering, Seattle, WA.Google ScholarGoogle Scholar
  32. Stam, J. 1997. Aperiodic texture mapping. Tech. rep. ERCIM-01/97-R046. European Research Consortium for Informatics and Mathematics, Sophia Antipolos, France.Google ScholarGoogle Scholar
  33. Turk, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. Comput. Graph. (Proceedings of ACM SIGGRAPH'91) 25, 4, 289--298. Google ScholarGoogle Scholar
  34. Ulichney, R. 1987. Digital Halftoning. MIT Press, Cambridge, MA. Google ScholarGoogle Scholar
  35. Wang, H. 1961. Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1--42.Google ScholarGoogle Scholar
  36. Wang, H. 1965. Games, logic and computers. Scient. Amer. 213, 5, 98--106.Google ScholarGoogle Scholar
  37. Wei, L.-Y. 2004. Tile-based texture mapping on graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, 55--63. Google ScholarGoogle Scholar
  38. Worley, S. 1996. A cellular texture basis function. In Proceedings of ACM SIGGRAPH 1996. 291--294. Google ScholarGoogle Scholar
  39. Yellot, J. I. 1982. Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing. Vis. Res. 22, 1205--1210.Google ScholarGoogle Scholar
  40. Yellot, J. I. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382--385.Google ScholarGoogle Scholar

Index Terms

  1. A procedural object distribution function

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader