skip to main content
article

Discrete conformal mappings via circle patterns

Published:01 April 2006Publication History
Skip Abstract Section

Abstract

We introduce a novel method for the construction of discrete conformal mappings from surface meshes of arbitrary topology to the plane. Our approach is based on circle patterns, that is, arrangements of circles---one for each face---with prescribed intersection angles. Given these angles, the circle radii follow as the unique minimizer of a convex energy. The method supports very flexible boundary conditions ranging from free boundaries to control of the boundary shape via prescribed curvatures. Closed meshes of genus zero can be parameterized over the sphere. To parameterize higher genus meshes, we introduce cone singularities at designated vertices. The parameter domain is then a piecewise Euclidean surface. Cone singularities can also help to reduce the often very large area distortion of global conformal maps to moderate levels. Our method involves two optimization problems: a quadratic program and the unconstrained minimization of the circle pattern energy. The latter is a convex function of logarithmic radius variables with simple explicit expressions for gradient and Hessian. We demonstrate the versatility and performance of our algorithm with a variety of examples.

References

  1. Bern, M. and Eppstein, D. 2001. Optimal Möbius transformations for information visualization and meshing. In Algorithms and Data Structures. Providence, RI. Lecture Notes in Computer Science, vol. 2125. Springer-Verlag, Berlin, Germany, 14--25.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bobenko, A. I. and Springborn, B. A. 2004. Variational principles for circle patterns and Koebe's Theorem. Trans. Amer. Math. Soc. 356, 659--689.]]Google ScholarGoogle ScholarCross RefCross Ref
  3. Bobenko, A. I. and Springborn, B. A. 2005. A discrete Laplace-Beltrami operator for simplicial surfaces. http://arxiv.org/abs/math.DG/0503219.]]Google ScholarGoogle Scholar
  4. Bowers, P. L. and Hurdal, M. K. 2003. Planar conformal mappings of piecewise flat surfaces. In Visualization and Mathematics III, H.-C. Hege and K. Polthier, Eds. Mathematics and Visualization. Springer-Verlag, Berlin, Germany, 3--34.]]Google ScholarGoogle Scholar
  5. Brägger, W. 1992. Kreispackungen und Triangulierungen. L'Enseignement Mathématique 38, 201--217.]]Google ScholarGoogle Scholar
  6. Colin de Verdière, Y. 1991. Un principe variationnel pour les empilements de cercles. Inventiones Mathematicae 104, 655--669.]]Google ScholarGoogle ScholarCross RefCross Ref
  7. Collins, C. and Stephenson, K. 2003. A circle packing algorithm. Computa. Geometry: Theory Appl. 25, 233--256.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. In Proceedings of Eurographics Computer Graphics Forum 21, 3, 209--218.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. Dillencourt, M. B. and Smith, W. D. 1996. Graph-theoretical conditions for inscribability and Delaunay realizability. Discrete Math. 161, 63--77.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Erickson, J. and Har-Peled, S. 2004. Optimally cutting a surface into a disk. Discrete Computat. Geometry 31, 1, 37--59.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Friedel, I., Schröder, P., and Desbrun, M. 2005. Unconstrained spherical parameterization. (http://multires.caltech.edu/pubs/SParam_JGT.pdf). Submitted for Publication.]]Google ScholarGoogle Scholar
  12. Garland, M., Willmott, A., and Heckbert, P. S. 2001. Hierarchical face clustering on polygonal surfaces. In Proceedings of the Symposium on Interactive 3D Graphics. ACM Press, 49--58.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grünbaum, B. 2003. Convex Polytopes, 2nd Ed. Graduate Texts in Mathematics, vol. 221. Springer-Verlag, New York, NY.]]Google ScholarGoogle ScholarCross RefCross Ref
  14. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21, 3, 355--361.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gu, X. and Yau, S.-T. 2003. Global conformal surface parameterization. In Proceedings of the Symposium on Geometry Processing. Eurographics Association, 127--137.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hirani, A. N. 2003. Discrete exterior calculus. Ph.D. thesis. California Institute of Technology.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Indermitte, C., Liebling, T., Troyanov, M., and Clémençon, H. 2001. Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theoret. Comput. Science 263, 1--2, 268--274.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jin, M., Wang, Y., Yau, S.-T., and Gu, X. 2004. Optimal global conformal surface parameterizations. In Proceedings of IEEE Visualization. IEEE Computer Society, 267--274.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Katz, S. and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954--961.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350--357.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Leibon, G. 2002. Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geometry Topolo. 6, 361--391.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362--371.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mercat, C. 2001. Discrete Riemann surfaces and the Ising model. Comm. Math. Physics 218, 1, 177--216.]]Google ScholarGoogle ScholarCross RefCross Ref
  24. Mosek. 2005. Constrained quadratic minimization software. Version 3.1r42. http://www.mosek.com/.]]Google ScholarGoogle Scholar
  25. Pinkall, U. and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2, 1, 15--36.]]Google ScholarGoogle ScholarCross RefCross Ref
  26. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2005. Periodic global parameterizations. (http://www.loria.fr/~levy/publications/papers/2005/PGP/pgp.pdf). Submitted for publication.]]Google ScholarGoogle Scholar
  27. Rivin, I. 1994. Euclidean structures on simplicial surfaces and hyperbolic volume. Annals of Math. 139, 3, 553--580.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. Rodin, B. and Sullivan, D. 1987. The convergence of circle packings to the Riemann mapping. J. Differ. Geometry 26, 2, 349--360.]]Google ScholarGoogle ScholarCross RefCross Ref
  29. Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. 2001. Texture mapping progressive meshes. In Proceedings of SIGGRAPH. 409--416.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Proceedings of the Symposium on Geometry Processing. Eurographics Association, 146--155.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sheffer, A. and de Sturler, E. 2000. Surface Parameterization for meshing by triangulation flattening. In Proceedings of the 9th International Meshing Roundtable. Sandia National Labs, 161--172.]]Google ScholarGoogle Scholar
  32. Sheffer, A. and Hart, J. C. 2002. Seamster: Inconspicuous low-distortion texture seam layout. In Proceedings of IEEE Visualization. IEEE Computer Society, 291--298.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sheffer, A., Lévy, B., Mogilnitski, M., and Bogomyakov, A. 2004. ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24, 2, 311--330.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proceedings of IEEE Visualization. IEEE Computer Society, 355--362.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Springborn, B. A. 2005. A unique representation of polyhedral types. Centering via Möbius transformations. Mathematische Zeitschrift 249, 3, 513--517.]]Google ScholarGoogle ScholarCross RefCross Ref
  36. Tarini, M., Hormann, K., Cignoni, P., and Montani, C. 2004. PolyCube-Maps. ACM Trans. Graph. 23, 3, 853--860.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thurston, W. P. 1980. The geometry and topology of three-manifolds. Available at http://www.msri.org/publications/books/gt3m/.]]Google ScholarGoogle Scholar
  38. Thurston, W. P. 1985. The finite Riemann mapping theorem. At the Symposium on the Occasion of the Proof of the Bieberbach Conjecture. Purdue University (March).]]Google ScholarGoogle Scholar
  39. Troyanov, M. 1991. Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Society 324, 793--821.]]Google ScholarGoogle ScholarCross RefCross Ref
  40. Zayer, R., Rössl, C., and Seidel, H.-P. 2003. Convex boundary angle based flattening. In Proceedings of Vision, Modeling and Visualiza. 281--288.]]Google ScholarGoogle Scholar
  41. Zhang, E., Mischaikow, K., and Turk, G. 2005. Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24, 1, 1--27.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ziegler, G. M. 2004. Convex polytopes: Extremal constructions and f-vector shapes. IAS/Park City Mathematics Series, vol. 14. http://arxiv.org/abs/math/0411400. To Appear.]]Google ScholarGoogle Scholar

Index Terms

  1. Discrete conformal mappings via circle patterns

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!