Abstract
We introduce a novel method for the construction of discrete conformal mappings from surface meshes of arbitrary topology to the plane. Our approach is based on circle patterns, that is, arrangements of circles---one for each face---with prescribed intersection angles. Given these angles, the circle radii follow as the unique minimizer of a convex energy. The method supports very flexible boundary conditions ranging from free boundaries to control of the boundary shape via prescribed curvatures. Closed meshes of genus zero can be parameterized over the sphere. To parameterize higher genus meshes, we introduce cone singularities at designated vertices. The parameter domain is then a piecewise Euclidean surface. Cone singularities can also help to reduce the often very large area distortion of global conformal maps to moderate levels. Our method involves two optimization problems: a quadratic program and the unconstrained minimization of the circle pattern energy. The latter is a convex function of logarithmic radius variables with simple explicit expressions for gradient and Hessian. We demonstrate the versatility and performance of our algorithm with a variety of examples.
- Bern, M. and Eppstein, D. 2001. Optimal Möbius transformations for information visualization and meshing. In Algorithms and Data Structures. Providence, RI. Lecture Notes in Computer Science, vol. 2125. Springer-Verlag, Berlin, Germany, 14--25.]] Google Scholar
Digital Library
- Bobenko, A. I. and Springborn, B. A. 2004. Variational principles for circle patterns and Koebe's Theorem. Trans. Amer. Math. Soc. 356, 659--689.]]Google Scholar
Cross Ref
- Bobenko, A. I. and Springborn, B. A. 2005. A discrete Laplace-Beltrami operator for simplicial surfaces. http://arxiv.org/abs/math.DG/0503219.]]Google Scholar
- Bowers, P. L. and Hurdal, M. K. 2003. Planar conformal mappings of piecewise flat surfaces. In Visualization and Mathematics III, H.-C. Hege and K. Polthier, Eds. Mathematics and Visualization. Springer-Verlag, Berlin, Germany, 3--34.]]Google Scholar
- Brägger, W. 1992. Kreispackungen und Triangulierungen. L'Enseignement Mathématique 38, 201--217.]]Google Scholar
- Colin de Verdière, Y. 1991. Un principe variationnel pour les empilements de cercles. Inventiones Mathematicae 104, 655--669.]]Google Scholar
Cross Ref
- Collins, C. and Stephenson, K. 2003. A circle packing algorithm. Computa. Geometry: Theory Appl. 25, 233--256.]] Google Scholar
Digital Library
- Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. In Proceedings of Eurographics Computer Graphics Forum 21, 3, 209--218.]]Google Scholar
Cross Ref
- Dillencourt, M. B. and Smith, W. D. 1996. Graph-theoretical conditions for inscribability and Delaunay realizability. Discrete Math. 161, 63--77.]] Google Scholar
Digital Library
- Erickson, J. and Har-Peled, S. 2004. Optimally cutting a surface into a disk. Discrete Computat. Geometry 31, 1, 37--59.]]Google Scholar
Digital Library
- Friedel, I., Schröder, P., and Desbrun, M. 2005. Unconstrained spherical parameterization. (http://multires.caltech.edu/pubs/SParam_JGT.pdf). Submitted for Publication.]]Google Scholar
- Garland, M., Willmott, A., and Heckbert, P. S. 2001. Hierarchical face clustering on polygonal surfaces. In Proceedings of the Symposium on Interactive 3D Graphics. ACM Press, 49--58.]] Google Scholar
Digital Library
- Grünbaum, B. 2003. Convex Polytopes, 2nd Ed. Graduate Texts in Mathematics, vol. 221. Springer-Verlag, New York, NY.]]Google Scholar
Cross Ref
- Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21, 3, 355--361.]] Google Scholar
Digital Library
- Gu, X. and Yau, S.-T. 2003. Global conformal surface parameterization. In Proceedings of the Symposium on Geometry Processing. Eurographics Association, 127--137.]] Google Scholar
Digital Library
- Hirani, A. N. 2003. Discrete exterior calculus. Ph.D. thesis. California Institute of Technology.]] Google Scholar
Digital Library
- Indermitte, C., Liebling, T., Troyanov, M., and Clémençon, H. 2001. Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theoret. Comput. Science 263, 1--2, 268--274.]] Google Scholar
Digital Library
- Jin, M., Wang, Y., Yau, S.-T., and Gu, X. 2004. Optimal global conformal surface parameterizations. In Proceedings of IEEE Visualization. IEEE Computer Society, 267--274.]] Google Scholar
Digital Library
- Katz, S. and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954--961.]] Google Scholar
Digital Library
- Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350--357.]] Google Scholar
Digital Library
- Leibon, G. 2002. Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geometry Topolo. 6, 361--391.]]Google Scholar
Cross Ref
- Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362--371.]] Google Scholar
Digital Library
- Mercat, C. 2001. Discrete Riemann surfaces and the Ising model. Comm. Math. Physics 218, 1, 177--216.]]Google Scholar
Cross Ref
- Mosek. 2005. Constrained quadratic minimization software. Version 3.1r42. http://www.mosek.com/.]]Google Scholar
- Pinkall, U. and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2, 1, 15--36.]]Google Scholar
Cross Ref
- Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2005. Periodic global parameterizations. (http://www.loria.fr/~levy/publications/papers/2005/PGP/pgp.pdf). Submitted for publication.]]Google Scholar
- Rivin, I. 1994. Euclidean structures on simplicial surfaces and hyperbolic volume. Annals of Math. 139, 3, 553--580.]]Google Scholar
Cross Ref
- Rodin, B. and Sullivan, D. 1987. The convergence of circle packings to the Riemann mapping. J. Differ. Geometry 26, 2, 349--360.]]Google Scholar
Cross Ref
- Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. 2001. Texture mapping progressive meshes. In Proceedings of SIGGRAPH. 409--416.]] Google Scholar
Digital Library
- Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Proceedings of the Symposium on Geometry Processing. Eurographics Association, 146--155.]] Google Scholar
Digital Library
- Sheffer, A. and de Sturler, E. 2000. Surface Parameterization for meshing by triangulation flattening. In Proceedings of the 9th International Meshing Roundtable. Sandia National Labs, 161--172.]]Google Scholar
- Sheffer, A. and Hart, J. C. 2002. Seamster: Inconspicuous low-distortion texture seam layout. In Proceedings of IEEE Visualization. IEEE Computer Society, 291--298.]] Google Scholar
Digital Library
- Sheffer, A., Lévy, B., Mogilnitski, M., and Bogomyakov, A. 2004. ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24, 2, 311--330.]] Google Scholar
Digital Library
- Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proceedings of IEEE Visualization. IEEE Computer Society, 355--362.]] Google Scholar
Digital Library
- Springborn, B. A. 2005. A unique representation of polyhedral types. Centering via Möbius transformations. Mathematische Zeitschrift 249, 3, 513--517.]]Google Scholar
Cross Ref
- Tarini, M., Hormann, K., Cignoni, P., and Montani, C. 2004. PolyCube-Maps. ACM Trans. Graph. 23, 3, 853--860.]] Google Scholar
Digital Library
- Thurston, W. P. 1980. The geometry and topology of three-manifolds. Available at http://www.msri.org/publications/books/gt3m/.]]Google Scholar
- Thurston, W. P. 1985. The finite Riemann mapping theorem. At the Symposium on the Occasion of the Proof of the Bieberbach Conjecture. Purdue University (March).]]Google Scholar
- Troyanov, M. 1991. Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Society 324, 793--821.]]Google Scholar
Cross Ref
- Zayer, R., Rössl, C., and Seidel, H.-P. 2003. Convex boundary angle based flattening. In Proceedings of Vision, Modeling and Visualiza. 281--288.]]Google Scholar
- Zhang, E., Mischaikow, K., and Turk, G. 2005. Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24, 1, 1--27.]] Google Scholar
Digital Library
- Ziegler, G. M. 2004. Convex polytopes: Extremal constructions and f-vector shapes. IAS/Park City Mathematics Series, vol. 14. http://arxiv.org/abs/math/0411400. To Appear.]]Google Scholar
Index Terms
Discrete conformal mappings via circle patterns
Recommendations
Conformal equivalence of triangle meshes
We present a new algorithm for conformal mesh parameterization. It is based on a precise notion of discrete conformal equivalence for triangle meshes which mimics the notion of conformal equivalence for smooth surfaces. The problem of finding a flat ...
Discrete conformal mappings via circle patterns
SIGGRAPH '05: ACM SIGGRAPH 2005 CoursesWe introduce a novel method for the construction of discrete conformal mappings from (regions of) embedded meshes to the plane. Our approach is based on circle patterns, i.e., arrangements of circles---one for each face---with prescribed intersection ...
Conformal self-organizing map on curved seamless surface
This paper presents a new mapping to construct the self-organizing map on the curved seamless surface. This mapping is developed for the planar triangle surface derived from the conformal self-organizing map [C.-Y. Liou, Y.-T. Kuo, Conformal self-...






Comments