skip to main content
article

Guided visibility sampling

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

This paper addresses the problem of computing the triangles visible from a region in space. The proposed aggressive visibility solution is based on stochastic ray shooting and can take any triangular model as input. We do not rely on connectivity information, volumetric occluders, or the availability of large occluders, and can therefore process any given input scene. The proposed algorithm is practically memoryless, thereby alleviating the large memory consumption problems prevalent in several previous algorithms. The strategy of our algorithm is to use ray mutations in ray space to cast rays that are likely to sample new triangles. Our algorithm improves the sampling efficiency of previous work by over two orders of magnitude.

Skip Supplemental Material Section

Supplemental Material

Low Resolution
High Resolution

References

  1. Aila, T., and Miettinen, V. 2004. dPVS: An occlusion culling system for massive dynamic environments. IEEE Computer Graphics & Applications 24, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Airey, J. M., Rohlf, J. H., and Brooks, Jr., F. P. 1990. Towards image realism with interactive update rates in complex virtual building environments. In Computer Graphics (1990 Symposium on Interactive 3D Graphics), vol. 24, 41--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Andujar, C., Saona, C., and Navazo, I. 2000. Lod visibility culling and occluder synthesis. Computer Aided Design 32, 13, 773 783.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bittner, J., Wonka, R, and Wimmer, M. 2001. Visibility preprocessing for urban scenes using line space subdivision. In Proc. of Pacific Graphics 2001, 276--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bittner, J. 2002. Efficient construction of visibility maps using approximate occlusion sweep. In SCCG '02: Proceedings of the 18th spring conference on Computer graphics, 167--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bittner, J. 2003. Hierarchical Techniques for Visibility Computations. PhD thesis, Czech Technical University in Prague.Google ScholarGoogle Scholar
  7. Chhugani, J., Purnomo, B., Krishnan, S., Cohen, J., Venkata-Subramanian, S., and Johnson, D. S. 2005. vLOD: High-fidelity walkthrough of large virtual environments. IEEE Trans. on Visualization and Computer Graphics 11, 1, 35--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cohen-Or, D., Chrysanthou, Y. L., Silva, C. T., and Durand, F. 2003. A survey of visibility for walkthrough applications. IEEE Trans. on Visualization and Computer Graphics 9, 3, 412--431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Duguet, F., and Drettakis, G. 2002. Robust epsilon visibility. In Proc. ACM SIGGRAPH 2002, 567--575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Durand, F., Drettakis, G., Thollot, J., and Puech, C. 2000. Conservative visibility preprocessing using extended projections. In Proc. ACM SIGGRAPH 2000, 239--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Durand, F. 1999. 3D Visibility: Analytical Study and Applications. PhD thesis, Universite Joseph Fourier, Grenoble, France.Google ScholarGoogle Scholar
  12. Gotsman, C., Sudarsky, O., and Fayman, J. 1999. Optimized occlusion culling using five-dimensional subdivision. Computers and Graphics 5, 23, 645--654.Google ScholarGoogle ScholarCross RefCross Ref
  13. Haumont, D., Mäkinen, O., and Nirenstein, S. 2005. A low dimensional framework for exact polygon-to-polygon occlusion queries. In Proc. Eurographics Symposium on Rendering, 211--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jeschke, S., Wimmer, M., Schumann, H., and Purgathofer, W. 2005. Automatic impostor placement for guaranteed frame rates and low memory requirements. In Proc. of ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Koltun, V., Chrysanthou, Y., and Cohen-Or, C.-O. 2001. Hardware-accelerated from-region visibility using a dual ray space. In Rendering Techniques 2001, 205--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In Proc. ACM SIGGRAPH 96, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Leyvand, T., Sorkine, O., and Cohen-Or, D. 2003. Ray space factorization for from-region visibility. ACM Transactions on Graphics 22, 3, 595--604. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mcdermott, D., and Gelsey, A. 1987. Terrain analysis for tactical situation assessment. In Proceedings Spatial Reasoning and Multi-Sensor Fusion, 420--429.Google ScholarGoogle Scholar
  19. Mora, F., Aveneau, L., and Mériaux, M. 2005. Coherent and exact polygon-to-polygon visibility. In Proceedings of Winter School on Computer Graphics 2005, 87--94.Google ScholarGoogle Scholar
  20. Müller, P., Wonka, P., Hägler, S., Ulmer, A., and Gool, L. V. 2006. Procedural modeling of buildings. ACM Transactions on Graphics 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM Philadelphia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nirenstein, S., and Blake, E. 2004. Hardware accelerated visibility preprocessing using adaptive sampling. In Rendering Techniques 2004, 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nirenstein, S., Blake, E., and Gain, J. 2002. Exact from-region visibility culling. In Rendering Techniques 2002, 191--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pito, R. 1999. A solution to the next best view problem for automated surface acquisition. IEEE Trans. Pattern Anal. Mach. Intell. 21, 10, 1016--1030. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Reshetov, A., Soupikov, A., and Hurley, J. 2005. Multi-level ray tracing algorithm. ACM Trans. on Graphics 24, 3, 1176--1185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sbert, M. 1993. An integral geometry method for fast form factor computation. Computer Graphics Forum 12, 3, C409-C420.Google ScholarGoogle ScholarCross RefCross Ref
  27. Schaufler, G., Dorsey, J., Decoret, X., and Sillion, F. 2000. Conservative volumetric visibility with occluder fusion. In Proc. ACM SIGGRAPH 2000, 229--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shade, J., Gortler, S., Wei He, L., and Szeliski, R. 1998. Layered depth images. In Proc. ACM SIGGRAPH 98, 231--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stuerzlinger, W. 1999. Imaging all visible surfaces. In Proc. Graphics Interface 1999, 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Teller, S. J., and Séquin, C. H. 1991. Visibility preprocessing for interactive walkthroughs. Computer Graphics (Proc. ACM SIGGRAPH 91) 25, 61--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wald, I., Purcell, T. J., Schmittler, J., Benthin, C., and Slusallek, P. 2003. Realtime ray tracing and its use for interactive global illumination. In Eurographics State of the Art Reports. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wald, I., Dietrich, A., and Slusallek, P. 2004. An interactive out-of-core rendering framework for visualizing massively complex models. In Rendering Techniques 2004, 81--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wilson, A., and Manocha, D. 2003. Simplifying complex environments using incremental textured depth meshes. ACM Transactions on Graphics 22, 3, 678--688. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wonka, P., Wimmer, M., and Schmalstieg, D. 2000. Visibility preprocessing with occluder fusion for urban walkthroughs. In Rendering Techniques 2000. 71--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wonka, P., Wimmer, M., and Sillion, F. 2001. Instant visibility. Computer Graphics Forum 20, 3, 411--421.Google ScholarGoogle ScholarCross RefCross Ref
  36. Woop, S., Schmittler, J., and Slusallek, P. 2005. RPU: a programmable ray processing unit for realtime ray tracing. ACM Transactions on Graphics 24, 3. 434--444. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Guided visibility sampling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 25, Issue 3
        July 2006
        742 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1141911
        Issue’s Table of Contents

        Copyright © 2006 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2006
        Published in tog Volume 25, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader