skip to main content
article

Interactive decal compositing with discrete exponential maps

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

A method is described for texturing surfaces using decals, images placed on the surface using local parameterizations. Decal parameterizations are generated with a novel O(N log N) discrete approximation to the exponential map which requires only a single additional step in Dijkstra's graph-distance algorithm. Decals are dynamically composited in an interface that addresses many limitations of previous work. Tools for image processing, deformation/feature-matching, and vector graphics are implemented using direct surface interaction. Exponential map decals can contain holes and can also be combined with conformal parameterization to reduce distortion. The exponential map approximation can be computed on any point set, including meshes and sampled implicit surfaces, and is relatively stable under resampling. The decals stick to the surface as it is interactively deformed, allowing the texture to be preserved even if the surface changes topology. These properties make exponential map decals a suitable approach for texturing animated implicit surfaces.

Skip Supplemental Material Section

Supplemental Material

Low Resolution
High Resolution

References

  1. Alexa, M., Klug, T., and Stoll, C. 2003. Direction fields over point-sampled geometry. In Proceedings of WSCG 03.Google ScholarGoogle Scholar
  2. Autodesk, 2005. Imagestudio. www.autodesk.com/imagestudio.Google ScholarGoogle Scholar
  3. Benson, D., and Davis, J. 2002. Octree textures. ACM Trans. Graph. 21, 3, 785--790. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blinn, J., and Newell, M. 1976. Texture and reflection in computer generated images. Communications of the ACM 19, 10, 542--547. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cheeger, J., and Ebin, D. G. 1975. Comparison Theorems in Riemannian Geometry. North-Holland Mathematical Library.Google ScholarGoogle Scholar
  6. Debry, D., Gibbs, J., Petty, D. D., and Robins, N. 2002. Painting and rendering textures on unparameterized models. ACM Trans. Graph. 21, 3, 763--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Comp. Graph. Forum 21, 3, 383--392.Google ScholarGoogle ScholarCross RefCross Ref
  8. Dey, T. K., and Goswami, S. 2004. Provable surface reconstruction from noisy samples. In Proceedings of the 20th annual symposium on Computational geometry, 330--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dijkstra, E. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 269--271.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dischler, J.-M., Mitaud, K., Lévy, B., and Ghazanfarpour, D. 2002. Texture particles. Comp. Graph. Forum 21, 3.Google ScholarGoogle ScholarCross RefCross Ref
  11. Do Carmo, M. P. 1976. Differential Geometry of Curves and Surfaces. Prentice Hall.Google ScholarGoogle Scholar
  12. Ebert, D. S., Ed. 2002. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann. ISBN 1558608486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fleishman, S., Cohen-Or, D., and Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24, 3, 544--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Floater, M., and Reimers, M. 2001. Meshless parameterization and surface reconstruction. Comp. Aided Geom. Design 18, 77--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Floater, M. 1997. Parametrization and smooth approximation of surface triangulations. Comp. Aided Geom Design 14, 231--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Grimm, C. 2004. Parameterization using manifolds. International Journal of Shape Modeling 10, 1, 51--80.Google ScholarGoogle ScholarCross RefCross Ref
  17. Gu, X., and Yau, S.-T. 2003. Global conformal surface parameterization. In Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing, 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hanrahan, P., and Haeberli, P. E. 1990. Direct wysiwyg painting and texturing on 3d shapes. In Proceedings of SIGGRAPH 90, vol. 24, 215--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kimmel, R., and Sethian, J. 1998. Computing geodesic paths on manifolds. Proc. of National Academy of Sci. 95, 15 (July), 8431--8435.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kraevoy, V., Sheffer, A., and Gotsman, C. 2003. Match-maker: Constructing constrained texture maps. ACM Trans. Graph. 22, 3, 326--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lee, H., Tong, Y., and Desbrun, M. 2005. Geodesics-based one-to-one parameterization of 3d triangle meshes. IEEE Multi-Media 12, 1, 27--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lefebvre, S., Hornus, S., and Neyret, F. 2005. Texture sprites: Texture elements splatted on surfaces. In ACM-SIGGRAPH Symposium on Interactive 3D Graphics (I3D). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. In Proceedings of ACM SIGGRAPH 2002, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lévy, B. 2001. Constrained texture mapping for polygonal meshes. In Proceedings of ACM SIGGRAPH 2001, 417--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Maillot, J., Yahia, H., and Verroust, A. 1993. Interactive texture mapping. In Proceedings of SIGGRAPH 93, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mitchell, J. 2000. Geometric Shortest paths and network optimization. Elsevier Science, ch. Handbook of Computational Geometry, 633--702.Google ScholarGoogle Scholar
  27. Pedersen, H. K. 1995. Decorating implicit surfaces. In Proceedings of SIGGRAPH 95, 291--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pedersen, H. K. 1996. A framework for interactive texturing operations on curved surfaces. In Proceedings of SIGGRAPH 96, 295--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Porter, T., and Duff, T. 1984. Compositing digital images. In Proceedings of SIGGRAPH 84, vol. 18, 253--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped textures. In Proceedings of ACM SIGGRAPH 2000, 465--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sander, P., Snyder, J., Gortler, S., and Hoppe, H. 2001. Texture mapping progressive meshes. In Proceedings of ACM SIGGRAPH 2001, 409--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Satherley, R., and Jones, M. 2001. Vector-city vector distance transform. Computer Vision and Image Understanding 82, 3, 238--254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sheffer, A., Lévy, B., Mogilnitsky, M., and Bogomyakov, A. 2005. ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24, 2, 311--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proceedings of IEEE Visualization, 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3, 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tigges, M., and Wyvill, B. 1999. A field interpolated texture mapping algorithm for skeletal implicit surfaces. In Computer Graphics International, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Turk, G., and O'Brien, J. F. 1999. Shape transformation using variational implicit functions. In Proceedings of ACM SIGGRAPH 99, 335--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Welch, W., and Witkin, A. 1994. Free-form shape design using triangulated surfaces. In Proceedings of SIGGRAPH 94, 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wyvill, B., Guy, A., and Galin, E. 1999. Extending the CSG tree. warping, blending and boolean operations in an implicit surface modeling system. Comp. Graph. Forum 18, 2, 149--158.Google ScholarGoogle ScholarCross RefCross Ref
  40. Zelinka, S., and Garland, M. 2004. Similarity-based surface modelling using geodesic fans. In Proceedings of the Eurographics Symposium on Geometry Processing, 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhang, E., Mischaikow, K., and Turk, G. 2005. Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24, 1, 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zhou, K., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H.-Y. 2005. Texturemontage: Seamless texturing of arbitrary surfaces from multiple images. ACM Trans. Graph. 24, 3, 1148--1155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zwicker, M., Pauly, M., Knoll, O., and Gross, M. 2002. Pointshop 3d: An interactive system for point-based surface editing. ACM Trans. Graph. 21, 3, 322--329. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive decal compositing with discrete exponential maps

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 25, Issue 3
          July 2006
          742 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1141911
          Issue’s Table of Contents

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2006
          Published in tog Volume 25, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader