Abstract
A piecewise smooth surface, possibly with boundaries, sharp edges, corners, or other features is defined by a set of samples. The basic idea is to model surface patches, curve segments and points explicitly, and then to glue them together based on explicit connectivity information. The geometry is defined as the set of stationary points of a projection operator, which is generalized to allow modeling curves with samples, and extended to account for the connectivity information. Additional tangent constraints can be used to model shapes with continuous tangents across edges and corners.
Supplemental Material
- Adams, B., Keiser, R., Pauly, M., Guibas, L. J., Gross, M., & Dutréé, P. 2005. Efficient raytracing of deforming point-sampled surfaces. Computer Graphics Forum 24, 3, 677--684.Google Scholar
Cross Ref
- Adamson, A., & Alexa, M. 2004. Approximating bounded, non-orientable surfaces from points. In Proceedings of Shape Modeling International 2004, IEEE Computer Society, F. Giannini & A. Pasko, Eds., 243--252. Google Scholar
Digital Library
- Alexa, M., & Adamson, A. 2004. On normals and projection operators for surfaces defined by point sets. In Proceedings of Eurographics Symposium on Point-based Graphics, Eurographics, M. Alexa, M. Gross, H. Pfister, & S. Rusinkiewicz, Eds., 149--156. Google Scholar
Digital Library
- Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., & Silva, C. T. 2001. Point set surfaces. In IEEE Visualization 2001, 21--28. ISBN 0-7803-7200-x. Google Scholar
Digital Library
- Alexa, M., 2006. Hermite point set surfaces. manuscript.Google Scholar
- Amenta, N., & Kil, Y. J. 2004. Defining point set surfaces. ACM Transactions on Graphics (SIGGRAPH 2004 issue) 23, 3, 264--270. Google Scholar
Digital Library
- Amenta, N., Bern, M., & Kamvysselis, M. 1998. A new voronoi-based surface reconstruction algorithm. Proceedings of SIGGRAPH 98 (July), 415--422. Google Scholar
Digital Library
- Biermann, H., Levin, A., & Zorin, D. 2000. Piecewise smooth subdivision surfaces with normal control. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 113--120. Google Scholar
Digital Library
- Biermann, H., Martin, I., Bernardini, F., & Zorin, D. 2002. Cut-and-paste editing of multiresolution surfaces. ACM Transactions on Graphics 21, 3 (July), 312--321. Google Scholar
Digital Library
- Biermann, H., Martin, I. M., Zorin, D., & Bernardini, F. 2002. Sharp features on multiresolution subdivision surfaces. Graphical Models 64, 2 (Mar.), 61--77. Google Scholar
Digital Library
- Bremer, P.-T., & Hart, J. C. 2005. A sampling theorem for mls surfaces. In Symposium on Point - Based Graphics 2005, 47--54. Google Scholar
Digital Library
- Dey, T. K., & Kumar, P. 1999. A simple provable algorithm for curve reconstruction. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM, N.Y., 893--894. Google Scholar
Digital Library
- Dey, T. K., & Sun, J. 2005. An adaptive mls surface for reconstruction with guarantees. In ACM Symposium on Geometry Processing, 43--52. Google Scholar
Digital Library
- Dey, T. K., Goswami, S., & Sun, J., 2005. Extremal surface based projections converge and reconstruct with isotopy. manuscript.Google Scholar
- Fleishman, S., Cohen-Or, D., & Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics 24, 3 (Aug.), 544--552. Google Scholar
Digital Library
- Grimm, C. M., & Hughes, J. F. 1995. Modeling surfaces of arbitrary topology using manifolds. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, 359--368. Google Scholar
Digital Library
- Gumhold, S., Wang, X., & McLeod, R. 2001. Feature extraction from point clouds. In Proc. 10th International Meshing Roundtable, 293--305.Google Scholar
- Hart, J. C. 1996. Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer 12, 9, 527--545.Google Scholar
Cross Ref
- Hart, J. C. 1999. Using the CW-complex to represent the topological structure of implicit surfaces and solids. In Proc. Implicit Surfaces '99, 107--112.Google Scholar
- Hatcher, A. 2002. Algebraic Topology. Cambridge University Press, Cambridge, UK.Google Scholar
- Hilaga, M., Shinagawa, Y., Kohmura, T., & Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3d shapes. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 203--212. Google Scholar
Digital Library
- Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., & Stuetzle, W. 1994. Piecewise smooth surface reconstruction. Proceedings of SIGGRAPH 94 (July), 295--302. Google Scholar
Digital Library
- Hoppe, H. 1996. Progressive meshes. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, 99--108. Google Scholar
Digital Library
- Kobbelt, L., & Botsch, M. 2004. A survey of point-based techniques in computer graphics. Computers & Graphics 28, 6, 801--814. Google Scholar
Digital Library
- Kobbelt, L., Campagna, S., Vorsatz, J., & Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 105--114. Google Scholar
Digital Library
- Kolluri, R. 2005. Provably good moving least squares. In ACM-SIAM Symposium on Discrete Algorithms. to appear. Google Scholar
Digital Library
- Kristjansson, D., Biermann, H., & Zorin, D. 2001. Approximate boolean operations on free-form solids. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 185--194. Google Scholar
Digital Library
- Levin, D. 1998. The approximation power of moving least-squares. Math. Comput. 67, 224, 1517--1531. Google Scholar
Digital Library
- Levin, A. 1999. Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16, 5, 345--354. Google Scholar
Digital Library
- Levin, D. 2003. Mesh-independent surface interpolation. In Geometric Modeling for Data Visualization, Springer.Google Scholar
- Litke, N., Levin, A., & Schrööder, P. 2001. Fitting subdivision surfaces. In IEEE Visualization 2001, 319--324. Google Scholar
Digital Library
- Nasri, A. H., & Sabin, M. A. 2002. Taxonomy of interpolation constraints on recursive subdivision surfaces. The Visual Computer 18, 5/6, 382--403.Google Scholar
- Ni, X., Garland, M., & Hart, J. C. 2004. Fair morse functions for extracting the topological structure of a surface mesh. ACM Transactions on Graphics 23, 3 (Aug.), 613--622. Google Scholar
Digital Library
- Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., & Seidel, H.-P. 2003. Multi-level partition of unity implicits. ACM Transactions on Graphics 22, 3 (July), 463--470. Google Scholar
Digital Library
- Pauly, M., Kaiser, R., Kobbelt, L., & Gross, M. 2003. Shape modeling with point-sampled geometry. ACM Transactions on Graphics (SIGGRAPH 2003 issue) 22, 3. to appear. Google Scholar
Digital Library
- Pauly, M., Keiser, R., & Gross, M. 2003. Multi-scale feature extraction on point-sampled surfaces. Computer Graphics Forum 22, 3 (Sept.), 281--290.Google Scholar
Cross Ref
- Rossignac, J. 1997. Structured topological complexes: a feature-based api for non-manifold topologies. In SMA '97: Proceedings of the Fourth Symposium on Solid Modeling and Applications, 1--9. Google Scholar
Digital Library
- Sederberg, T. W., Zheng, J., Bakenov, A., & Nasri, A. 2003. T-splines and t-nurccs. ACM Transactions on Graphics 22, 3 (July), 477--484. Google Scholar
Digital Library
- Sederberg, T. W., Cardon, D. L., Finnigan, G. T., North, N. S., Zheng, J., & Lyche, T. 2004. T-spline simplification and local refinement. ACM Transactions on Graphics 23, 3 (Aug.), 276--283. Google Scholar
Digital Library
- Shen, C., O'Brien, J. F., & Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. ACM Transactions on Graphics 23, 3 (Aug.), 896--904. Google Scholar
Digital Library
- Shinagawa, Y., Kunii, T. L., & Kergosien, Y. L. 1991. Surface coding based on morse theory. IEEE Computer Graphics & Applications 11, 5 (Sept.), 66--78. Google Scholar
Digital Library
- Wald, I., & Seidel, H.-P. 2005. Interactive ray tracing of point based models. In Proceedings of 2005 Symposium on Point Based Graphics, 9--16. Google Scholar
Digital Library
- Wendland, H. 1995. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 4, 389--396.Google Scholar
Cross Ref
- Ying, L., & Zorin, D. 2001. Nonmanifold subdivision. In IEEE Visualization 2001, 325--331. Google Scholar
Digital Library
- Ying, L., & Zorin, D. 2004. A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Transactions on Graphics 23, 3 (Aug.), 271--275. Google Scholar
Digital Library
- Zorin, D., Schröder, P., & Sweldens, W. 1997. Interactive multiresolution mesh editing. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, 259--268. Google Scholar
Digital Library
- Zwicker, M., Pauly, M., Knoll, O., & Gross, M. 2002. Pointshop 3d: An interactive system for point-based surface editing. ACM Transactions on Graphics 21, 3 (July), 322--329. Google Scholar
Digital Library
Index Terms
Point-sampled cell complexes
Recommendations
Point-sampled cell complexes
SIGGRAPH '06: ACM SIGGRAPH 2006 PapersA piecewise smooth surface, possibly with boundaries, sharp edges, corners, or other features is defined by a set of samples. The basic idea is to model surface patches, curve segments and points explicitly, and then to glue them together based on ...
Spline-based feature curves from point-sampled geometry
Defining sharp features in a 3D model facilitates a better understanding of the surface and aids geometric processing and graphics applications, such as reconstruction, filtering, simplification, reverse engineering, visualization, and non-photo ...
Interpolatory point set surfaces—convexity and Hermite data
Point set surfaces define a (typically) manifold surface from a set of scattered points. The definition involves weighted centroids and a gradient field. The data points are interpolated if singular weight functions are used to define the centroids. ...





Comments