skip to main content
article

High dynamic range texture compression for graphics hardware

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

In this paper, we break new ground by presenting algorithms for fixed-rate compression of high dynamic range textures at low bit rates. First, the S3TC low dynamic range texture compression scheme is extended in order to enable compression of HDR data. Second, we introduce a novel robust algorithm that offers superior image quality. Our algorithm can be efficiently implemented in hardware, and supports textures with a dynamic range of over 109:1. At a fixed rate of 8 bits per pixel, we obtain results virtually indistinguishable from uncompressed HDR textures at 48 bits per pixel. Our research can have a big impact on graphics hardware and real-time rendering, since HDR texturing suddenly becomes affordable.

Skip Supplemental Material Section

Supplemental Material

High Resolution
Low Resolution

References

  1. Beers, A., Agrawala, M., and Chadda, N. 1996. Rendering from Compressed Textures. In Proceedings of ACM SIGGRAPH 96, 373--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bogart, R., Kainz, F., and Hess, D. 2003. OpenEXR Image File Format. In ACM SIGGRAPH Sketches & Applications.Google ScholarGoogle Scholar
  3. Chalmers, A., McNamara, A., Daly, S., Myszkowski, K., and Troscianko, T. 2000. Image Quality Metrics. In ACM SIGGRAPH Course Notes.Google ScholarGoogle Scholar
  4. Cohen, J., Tchou, C., Hawkins, T., and Debevec, P. 2001. Real-Time High Dynamic Range Texture Mapping. In Eurographics Workshop on Rendering, 313--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Daly, S. 1993. The Visible Differences Predictor: An Algorithm for the Assessment of Image Fidelity. In Digital Images and Human Vision. MIT Press, 179--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Debevec, P. E., and Malik, J. 1997. Recovering High Dynamic Range Radiance Maps from Photographs. In Proceedings of ACM SIGGRAPH 97, 369--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Debevec, P. E. 1998. Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-Based Graphics with Global Illumination and High Dynamic Range Photography. In Proceedings of ACM SIGGRAPH 98, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dryden, I., and Mardia, K. 1998. Statistical Shape Analysis. Wiley.Google ScholarGoogle Scholar
  9. Fenney, S. 2003. Texture Compression using Low-Frequency Signal Modulation. In Graphics Hardware, 84--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Iourcha, K., Nayak, K., and Hong, Z., 1999. System and Method for Fixed-Rate Block-Based Image Compression with Inferred Pixel Values. US Patent 5,956,431.Google ScholarGoogle Scholar
  11. Knittel, G., Schilling, A. G., Kugler, A., and Strasser, W. 1996. Hardware for Superior Texture Performance. Computers & Graphics, 20, 4, 475--481.Google ScholarGoogle ScholarCross RefCross Ref
  12. Li, Y., Sharan, L., and Adelson, E. H. 2005. Compressing and Companding High Dynamic Range Images with Subband Architectures. ACM Transactions on Graphics, 24, 3, 836--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Mantiuk, R., Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2004. Perception-Motivated High Dynamic Range Video Encoding. ACM Transactions on Graphics, 23, 3, 733--741. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H.-P. 2005. Predicting Visible Differences in High Dynamic Range Images -- Model and its Calibration. In Human Vision and Electronic Imaging X, 204--214.Google ScholarGoogle Scholar
  15. Owens, J. D. 2005. Streaming Architectures and Technology Trends. In GPU Gems 2. Addison-Wesley, 457--470.Google ScholarGoogle Scholar
  16. Pereberin, A. 1999. Hierarchical Approach for Texture Compression. In Proceedings of GraphiCon '99, 195--199.Google ScholarGoogle Scholar
  17. Poynton, C. 2003. Digital Video and HDTV Algorithms and Interfaces. Morgan Kaufmann Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. 2005. High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting. Morgan Kaufmann Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sangwine, S. J., and Horne, R. E. N., Eds. 1998. The Colour Image Processing Handbook. Chapman and Hill. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Seetzen, H., Whitehead, L. A., and Ward, G. 2003. A High Dynamic Range Display Using Low and High Resolution Modulators. Society for Information Display Internatiational Symposium Digest of Technical Papers, 1450--1453.Google ScholarGoogle Scholar
  21. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High Dynamic Range Display Systems. ACM Transactions on Graphics 23, 3, 760--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ström, J., and Akenine-Möller, T. 2005. iPACKMAN: High-Quality, Low-Complexity Texture Compression for Mobile Phones. In Graphics Hardware, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Torborg, J., and Kajiya, J. 1996. Talisman: Commodity Realtime 3D Graphics for the PC. In Proceedings of SIGGRAPH, 353--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ward, G., and Simmons, M. 2004. Subband Encoding of High Dynamic Range Imagery. In Proceedings of APGV '04, 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ward, G. 1991. Real Pixels. In Graphics Gems II. Academic Press, 80--83.Google ScholarGoogle Scholar
  26. Ward, G. J. 1994. The RADIANCE Lighting Simulation and Rendering System. In Proceedings of ACM SIGGRAPH 94, 459--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ward, G. L. 1998. LogLuv Encoding for Full Gamut High Dynamic Range Images. Journal of Graphics Tools, 3, 1, 15--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ward, G., 2005. High Dynamic Range Image Encodings, http://www.anyhere.com/.Google ScholarGoogle Scholar
  29. Xu, R., Pattanaik, S. N., and Hughes, C. E. 2005. High-Dynamic-Range Still-Image Encoding in JPEG 2000. IEEE Computer Graphics and Applications, 25, 6, 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. High dynamic range texture compression for graphics hardware

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 25, Issue 3
            July 2006
            742 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1141911
            Issue’s Table of Contents

            Copyright © 2006 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2006
            Published in tog Volume 25, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader