skip to main content
article

Fluid animation with dynamic meshes

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

This paper presents a method for animating fluid using unstructured tetrahedral meshes that change at each time step. We show that meshes that conform well to changing boundaries and that focus computation in the visually important parts of the domain can be generated quickly and reliably using existing techniques. We also describe a new approach to two-way coupling of fluid and rigid bodies that, while general, benefits from remeshing. Overall, the method provides a flexible environment for creating complex scenes involving fluid animation.

Skip Supplemental Material Section

Supplemental Material

Low Resolution
High Resolution

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. In the Proceedings of ACM SIGGRAPH 2005, 617--625.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Botta, N., and Hempel, D. 1996. A finite volume projection method for the numerical solution of the incompressible navier-stokes equations on triangular grids. First International Symposium on Finite Volumes for Complex Applications, 15--18 (July), 355--363.]]Google ScholarGoogle Scholar
  3. Cani, M.-P., and Desbrun, M. 1997. Animation of deformable models using implicit surfaces. IEEE Transactions on Visualization and Computer Graphics 3, 1 (Jan.), 39--50.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In the ACM SIGGRAPH 2002 Symposium on Computer Animation, 167--174.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. In the Proceedings of ACM SIGGRAPH 2004, 377--384.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Computer Animation and Simulation 1996, 61--76.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Donea, J., Fasoli-Stella, P., and Giuliani, S. 1977. Lagrangian and eulerian finite element techniques for transient fluid-structure interaction problems. In Trans. 4th SMIRT Conf.]]Google ScholarGoogle Scholar
  8. Donea, J., Huerta, A., Ponthot, J.-P., and Rodríguez-Ferran, A. 2004. The Encyclopedia of Computational Mechanics. John Wiley & Sons Inc., New York.]]Google ScholarGoogle Scholar
  9. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2005. Discrete, circulation-preserving, and stable simplicial fluids. Preprint, Caltech.]]Google ScholarGoogle Scholar
  10. Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002. Animation and rendering of complex water surfaces. In the Proceedings of ACM SIGGRAPH 2002, 736--744.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In the Proceedings of ACM SIGGRAPH 2001, 15--22.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. In the Proceedings of ACM SIGGRAPH 2003, 708--715.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. In Proceedings of ACM SIGGRAPH 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005. Fluids in deforming meshes. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In the Proceedings of ACM SIGGRAPH 2001, 23--30.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. In Graphics Interface 1996, 204--212.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In the Proceedings of ACM SIGGRAPH 97, 181--188.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. In the Proceedings of ACM SIGGRAPH 2004, 463--468.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In the Proceedings of ACM SIGGRAPH 2005, 973--981.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Harlow, F., and Welch, J. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. The Physics of Fluids 8, 2182--2189.]]Google ScholarGoogle ScholarCross RefCross Ref
  21. Hirt, C., Amsden, A., and Cook, J. 1974. An arbitrary lagrangian-eulerian computing method for all flow speeds. Journal of Computational Physics 14, 227--253.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. Ju, T., Schaefer, S., Warren, J., and Desbrun, M. 2005. A geometric construction of coordinates for convex polyhedra using polar duals. In Eurographics Symposium on Geometry Processing 2005, 181--186.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In the Proceedings of ACM SIGGRAPH 2004, 457--462.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In the ACM SIGGRAPH 2003 Symposium on Computer Animation, 154--159.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In the ACM SIGGRAPH 2004 Symposium on Computer Animation, 141--151.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Owen, S. J. 1998. A survey of unstructured mesh generation technology. In the 7th International Meshing Roundtable, 239--267.]]Google ScholarGoogle Scholar
  27. Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. Computer Graphics Forum 22, 3 (Sept.), 401--410.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photo-realistic liquids. In the ACM SIGGRAPH 2004 Symposium on Computer Animation, 193--202.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water, and explosions. In the Proceedings of ACM SIGGRAPH 2005, 910--914.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Shah, M., Cohen, J., Patel, S., Lee, P., and Pighin, F. 2004. Extended galilean invariance for adaptive fluid simulation. In 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 13 -- 221.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stam, J. 1999. Stable fluids. In the Proceedings of ACM SIGGRAPH 99, 121--128.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gascuel, J.-D. 1999. Animating lava flows. In Graphics Interface 99, 203--210.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Teng, S.-H., and Wong, C. W. 2000. Unstructured mesh generation: Theory, practice, and perspectives. International journal of computational geometry applications 10, 3, 227--266.]]Google ScholarGoogle Scholar
  34. Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In Graphics Interface 1989, 219--226.]]Google ScholarGoogle Scholar
  35. Warren, J., Schaefer, S., Hirani, A. N., and Desbrun, M. 2004. Barycentric coordinates for convex sets. To appear in Advances in Computational and Applied Mathematics.]]Google ScholarGoogle Scholar
  36. Yngve, G. D., O'Brien, J. F., and Hodgins, J. K. 2000. Animating explosions. In the Proceedings of ACM SIGGRAPH 2000, 29--36.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fluid animation with dynamic meshes

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 25, Issue 3
            July 2006
            742 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1141911
            Issue’s Table of Contents

            Copyright © 2006 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2006
            Published in tog Volume 25, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader