Abstract
This paper presents a method for animating fluid using unstructured tetrahedral meshes that change at each time step. We show that meshes that conform well to changing boundaries and that focus computation in the visually important parts of the domain can be generated quickly and reliably using existing techniques. We also describe a new approach to two-way coupling of fluid and rigid bodies that, while general, benefits from remeshing. Overall, the method provides a flexible environment for creating complex scenes involving fluid animation.
Supplemental Material
- Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. In the Proceedings of ACM SIGGRAPH 2005, 617--625.]] Google Scholar
Digital Library
- Botta, N., and Hempel, D. 1996. A finite volume projection method for the numerical solution of the incompressible navier-stokes equations on triangular grids. First International Symposium on Finite Volumes for Complex Applications, 15--18 (July), 355--363.]]Google Scholar
- Cani, M.-P., and Desbrun, M. 1997. Animation of deformable models using implicit surfaces. IEEE Transactions on Visualization and Computer Graphics 3, 1 (Jan.), 39--50.]] Google Scholar
Digital Library
- Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In the ACM SIGGRAPH 2002 Symposium on Computer Animation, 167--174.]] Google Scholar
Digital Library
- Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. In the Proceedings of ACM SIGGRAPH 2004, 377--384.]] Google Scholar
Digital Library
- Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Computer Animation and Simulation 1996, 61--76.]] Google Scholar
Digital Library
- Donea, J., Fasoli-Stella, P., and Giuliani, S. 1977. Lagrangian and eulerian finite element techniques for transient fluid-structure interaction problems. In Trans. 4th SMIRT Conf.]]Google Scholar
- Donea, J., Huerta, A., Ponthot, J.-P., and Rodríguez-Ferran, A. 2004. The Encyclopedia of Computational Mechanics. John Wiley & Sons Inc., New York.]]Google Scholar
- Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2005. Discrete, circulation-preserving, and stable simplicial fluids. Preprint, Caltech.]]Google Scholar
- Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002. Animation and rendering of complex water surfaces. In the Proceedings of ACM SIGGRAPH 2002, 736--744.]] Google Scholar
Digital Library
- Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In the Proceedings of ACM SIGGRAPH 2001, 15--22.]] Google Scholar
Digital Library
- Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. In the Proceedings of ACM SIGGRAPH 2003, 708--715.]] Google Scholar
Digital Library
- Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. In Proceedings of ACM SIGGRAPH 2005.]] Google Scholar
Digital Library
- Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005. Fluids in deforming meshes. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2005.]] Google Scholar
Digital Library
- Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In the Proceedings of ACM SIGGRAPH 2001, 23--30.]] Google Scholar
Digital Library
- Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. In Graphics Interface 1996, 204--212.]] Google Scholar
Digital Library
- Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In the Proceedings of ACM SIGGRAPH 97, 181--188.]] Google Scholar
Digital Library
- Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. In the Proceedings of ACM SIGGRAPH 2004, 463--468.]] Google Scholar
Digital Library
- Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In the Proceedings of ACM SIGGRAPH 2005, 973--981.]] Google Scholar
Digital Library
- Harlow, F., and Welch, J. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. The Physics of Fluids 8, 2182--2189.]]Google Scholar
Cross Ref
- Hirt, C., Amsden, A., and Cook, J. 1974. An arbitrary lagrangian-eulerian computing method for all flow speeds. Journal of Computational Physics 14, 227--253.]]Google Scholar
Cross Ref
- Ju, T., Schaefer, S., Warren, J., and Desbrun, M. 2005. A geometric construction of coordinates for convex polyhedra using polar duals. In Eurographics Symposium on Geometry Processing 2005, 181--186.]] Google Scholar
Digital Library
- Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In the Proceedings of ACM SIGGRAPH 2004, 457--462.]] Google Scholar
Digital Library
- Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In the ACM SIGGRAPH 2003 Symposium on Computer Animation, 154--159.]] Google Scholar
Digital Library
- Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In the ACM SIGGRAPH 2004 Symposium on Computer Animation, 141--151.]] Google Scholar
Digital Library
- Owen, S. J. 1998. A survey of unstructured mesh generation technology. In the 7th International Meshing Roundtable, 239--267.]]Google Scholar
- Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. Computer Graphics Forum 22, 3 (Sept.), 401--410.]]Google Scholar
Cross Ref
- Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photo-realistic liquids. In the ACM SIGGRAPH 2004 Symposium on Computer Animation, 193--202.]] Google Scholar
Digital Library
- Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water, and explosions. In the Proceedings of ACM SIGGRAPH 2005, 910--914.]] Google Scholar
Digital Library
- Shah, M., Cohen, J., Patel, S., Lee, P., and Pighin, F. 2004. Extended galilean invariance for adaptive fluid simulation. In 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 13 -- 221.]] Google Scholar
Digital Library
- Stam, J. 1999. Stable fluids. In the Proceedings of ACM SIGGRAPH 99, 121--128.]] Google Scholar
Digital Library
- Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gascuel, J.-D. 1999. Animating lava flows. In Graphics Interface 99, 203--210.]] Google Scholar
Digital Library
- Teng, S.-H., and Wong, C. W. 2000. Unstructured mesh generation: Theory, practice, and perspectives. International journal of computational geometry applications 10, 3, 227--266.]]Google Scholar
- Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In Graphics Interface 1989, 219--226.]]Google Scholar
- Warren, J., Schaefer, S., Hirani, A. N., and Desbrun, M. 2004. Barycentric coordinates for convex sets. To appear in Advances in Computational and Applied Mathematics.]]Google Scholar
- Yngve, G. D., O'Brien, J. F., and Hodgins, J. K. 2000. Animating explosions. In the Proceedings of ACM SIGGRAPH 2000, 29--36.]] Google Scholar
Digital Library
Index Terms
Fluid animation with dynamic meshes
Recommendations
A method for animating viscoelastic fluids
This paper describes a technique for animating the behavior of viscoelastic fluids, such as mucus, liquid soap, pudding, toothpaste, or clay, that exhibit a combination of both fluid and solid characteristics. The technique builds upon prior Eulerian ...
A semi-Lagrangian contouring method for fluid simulation
In this article, we present a semi-Lagrangian surface tracking method for use with fluid simulations. Our method maintains an explicit polygonal mesh that defines the surface, and an octree data structure that provides both a spatial index for the mesh ...
Liquid simulation on lattice-based tetrahedral meshes
SCA '07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animationWe describe a method for animating incompressible liquids with detailed free surfaces. For each time step, semi-Lagrangian contouring computes a new fluid boundary (represented as a fine surface triangulation) from the previous time step's fluid ...





Comments