skip to main content
article

Compression of motion capture databases

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

We present a lossy compression algorithm for large databases of motion capture data. We approximate short clips of motion using Bezier curves and clustered principal component analysis. This approximation has a smoothing effect on the motion. Contacts with the environment (such as foot strikes) have important detail that needs to be maintained. We compress these environmental contacts using a separate, JPEG like compression algorithm and ensure these contacts are maintained during decompression.Our method can compress 6 hours 34 minutes of human motion capture from 1080 MB data into 35.5 MB with little visible degradation. Compression and decompression is fast: our research implementation can decompress at about 1.2 milliseconds/frame, 7 times faster than real-time (for 120 frames per second animation). Our method also yields smaller compressed representation for the same error or produces smaller error for the same compressed size.

Skip Supplemental Material Section

Supplemental Material

Low Resolution
High Resolution

References

  1. Alexa, M., and Muller, W. 2000. Representing animations by principal components. In Eurographics Computer Animation and Simulation, vol. 19, 411--418.]]Google ScholarGoogle Scholar
  2. Alexander, R. M. 1991. Optimum timing of muscle activation for simple models of throwing. J. Theor. Biol. 150, 349--372.]]Google ScholarGoogle ScholarCross RefCross Ref
  3. Arikan, O., and Forsyth, D. 2002. Interactive motion generation from examples. In Proceedings of SIGGRAPH 2002, 483--490.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2005. Pushing people around. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer animation, ACM Press, 59--66.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chai, J., and Hodgins, J. K. 2005. Performance animation from low-dimensional control signals. Proceedings of SIGGRAPH 2005 24, 3, 686--696.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fowlkes, C., Belongie, S., Chung, F., and Malik, J. 2004. Spectral grouping using the nystrom method. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, 214--225.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Grochow, K., Martin, S. L., Hertzmann, A., and Popovic;, Z. 2004. Style-based inverse kinematics. Proceedings of SIGGRAPH 2005 23, 3, 522--531.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gupta, S., Sengupta, K., and Kassim, A. A. 2002. Compression of dynamic 3d geometry data using iterative closest point algorithm. Comput. Vis. Image Underst. 87, 1--3, 116--130.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Guskov, I., and Khodakovsky, A. 2004. Wavelet compression of parametrically coherent mesh sequences. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 183--192.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Harrison, J., Rensink, R. A., and Van De Panne, M. 2004. Obscuring length changes during animated motion. Proceedings of SIGGRAPH 2004 23, 3, 569--573.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ibarria, L., and Rossignac, J. 2003. Dynapack: space-time compression of the 3d animations of triangle meshes with fixed connectivity. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, 126--135.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ikemoto, L., and Forsyth, D. A. 2004. Enriching a motion collection by transplanting limbs. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 99--108.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ikemoto, L., Arikan, O., and Forsyth, D. 2005. Knowing when to put your foot down. In, 13D: Symposium on Interactive 3D Graphics and Games, 49--53.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. Proceedings of SIGGRAPH 2005 24, 3, 399--407.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jenkins, O. C., and Mataric, M. J. 2003. Automated derivation of behavior vocabularies for autonomous humanoid motion. In AAMAS '03: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, 225--232.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jpeg, 2000. Jpeg 2000 - http://www.jpeg.org/jpeg2000/index.html.]]Google ScholarGoogle Scholar
  17. Karni, Z., and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proceedings of SIGGRAPH 2000, 279--286.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In Proceedings of SIGGRAPH 2002, 473--482.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kovar, L., Gleicher, M., and Schreiner, J. 2002. Footstake cleanup for motion capture editing. In ACM SIGGRAPH Symposium on Computer Animation 2002, 97--104.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, J., Chai, J., Reitsma, P., Hodgins, J., and Pollard, N. 2002. Interactive control of avatars animated with human motion data. In Proceedings of SIGGRAPH 2002, 491--500.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lengyel, J. E. 1999. Compression of time-dependent geometry. In SI3D '99: Proceedings of the 1999 symposium on Interactive 3D graphics, 89--95.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, Y., Wang, T., and Shum, H. Y. 2002. Motion texture: A two-level statistical model for character motion synthesis. In Proceedings of SIGGRAPH 2002, 465--472.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. Proceedings of SIGGRAPH 2003 22, 3, 562--568.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O'Sullivan, C., Dingliana, J., Giang, T., and Kaiser, M. K. 2003. Evaluating the visual fidelity of physically based animations. Proceedings of SIGGRAPH 2003 22, 3, 527--536.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pavlovic, V., Rehg, J. M., and Maccormick, J. 2000. Learning switching linear models of human motion. In NIPS, 981--987.]]Google ScholarGoogle Scholar
  26. Pullen, K., and Bregler, C. 2002. Motion capture assisted animation: Texturing and synthesis. In Proceedings of SIGGRAPH 2002, 501--508.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Reitsma, P. S. A., and Pollard, N. S. 2003. Perceptual metrics for character animation: sensitivity to errors in ballistic motion. Proceedings of SIGGRAPH 2003 22, 3, 537--542.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ren, L., Patrick, A., Efros, A. A., Hodgins, J. K., and Rehg, J. M. 2005. A data-driven approach to quantifying natural human motion. Proceedings of SIGGRAPH 2005 24, 3, 1090--1097.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multi-dimensional motion interpolation. IEEE Computer Graphics and Applications 18, 5, 32--41.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rossignac, J. 1999. Edgebreaker. Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 1 (1), 47--61.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Safonova, A., and Hodgins, J. K. 2005. Analyzing the physical correctness of interpolated human motion. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, 171--180.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. Proceedings of SIGGRAPH 2004 23, 3, 514--521.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Salomon, D. 2000. Data Compression: The Complete Reference, second ed.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sattler, M., Sarlette, R., and Klein, R. 2005. Simple and efficient compression of animation sequences. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, 209--217.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shi, J., and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8, 888--905.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sloan, P.-P. J., Charles F. Rose, I., and Cohen, M. F. 2001. Shape by example. In SI3D '01: Proceedings of the 2001 symposium on Interactive 3D graphics, 135--143.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. Proceedings of SIGGRAPH 2003 22, 3, 382--391.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Tolani, D., Goswami, A., and Badler, N. I. 2000. Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical models 62, 5, 353--388.]]Google ScholarGoogle Scholar
  39. Vecchio, D. D., Murray, R. M., and Perona, P. 2003. Classification of human motion into dynamics based primitives with application to drawing tasks. In Proc. of European Control Conference.]]Google ScholarGoogle Scholar
  40. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, 129--138.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Compression of motion capture databases

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 25, Issue 3
                July 2006
                742 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1141911
                Issue’s Table of Contents

                Copyright © 2006 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 July 2006
                Published in tog Volume 25, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader