skip to main content
article

Spectral surface quadrangulation

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

Resampling raw surface meshes is one of the most fundamental operations used by nearly all digital geometry processing systems. The vast majority of this work has focused on triangular remeshing, yet quadrilateral meshes are preferred for many surface PDE problems, especially fluid dynamics, and are best suited for defining Catmull-Clark subdivision surfaces. We describe a fundamentally new approach to the quadrangulation of manifold polygon meshes using Laplacian eigenfunctions, the natural harmonics of the surface. These surface functions distribute their extrema evenly across a mesh, which connect via gradient flow into a quadrangular base mesh. An iterative relaxation algorithm simultaneously refines this initial complex to produce a globally smooth parameterization of the surface. From this, we can construct a well-shaped quadrilateral mesh with very few extraordinary vertices. The quality of this mesh relies on the initial choice of eigenfunction, for which we describe algorithms and hueristics to efficiently and effectively select the harmonic most appropriate for the intended application.

Skip Supplemental Material Section

Supplemental Material

High Resolution
Low Resolution

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. TOG 22, 3, 485--493. (Proc. SIGGRAPH).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alliez, P., Ucelli, G., Gotsman, C., and Attene, M. 2005. Recent advances in remeshing of surfaces. ftp://ftp-sop.inria.fr/geometrica/alliez/survey_remeshing.pdf.]]Google ScholarGoogle Scholar
  3. Banchoff, T. F. 1967. Critical points and curvature for embedded polyhedral surfaces. Differential Geometry, 3, 1, 257--268.]]Google ScholarGoogle Scholar
  4. Bern, M. W., and Eppstein, D. 1995. Mesh generation and optimal triangulation. In Computing in Euclidean Geometry, Lecture Notes on Computing #4. World Scientific, 47--123.]]Google ScholarGoogle Scholar
  5. Boier-Martin, I., Rushmeier, H., and Jin, J. 2004. Parameterization of triangle meshes over quadrilateral domains. In Proc. Eurographics Symposium on Geometry Processing, 197--207.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bremer, P.-T., Edelsbrunner, H., Hamann, B., and Pascucci, V. 2004. A topological hierarchy for functions on triangulated surfaces. TVCG 10, 4, 385--396.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chung, F. R. K. 1997. Spectral Graph Theory. American Mathematical Society.]]Google ScholarGoogle Scholar
  8. Courant, R., and Hilbert, D. 1953. Methods of Mathematical Physics, vol. I. Interscience Publishers, New York.]]Google ScholarGoogle Scholar
  9. Dong, S., Kircher, S., and Garland, M. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. CAGD 22, 5, 392--423.]]Google ScholarGoogle ScholarCross RefCross Ref
  10. Eck, M., and Hoppe, H. 1996. Automatic reconstruction of B-spline surfaces of arbitrary topological type. In Proc. SIGGRAPH, 325--334.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eck, M., DeRose, T. D., Duchamp, T., Hoppe, H., Louns-Bery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. In Proc. SIGGRAPH, 173--182.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2002. Topological persistence and simplification. Discrete Comput. Geom. 28, 511--533.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Edelsbrunner, H., Harer, J., and Zomorodian, A. 2003. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87--107.]]Google ScholarGoogle ScholarCross RefCross Ref
  14. Floater, M. S., and Hormann, K. 2004. Surface parameterization: A tutorial and survey. In Multiresolution in Geometric Modelling.]]Google ScholarGoogle Scholar
  15. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1 (Mar.), 19--27.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Friedel, I., Schröder, P., and Khodakovsky, A. 2004. Variational normal meshes. TOG 23, 4, 1061--1073.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proc. SIGGRAPH, 209--216.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Garland, M. 1999. Multiresolution modeling: Survey & future opportunities. In State of the Art Report, Eurographics, 111--131.]]Google ScholarGoogle Scholar
  19. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. TOG 21, 3, 355--361. (Proc. SIGGRAPH).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Guskov, I., Vidimce, K., Sweldens, W., and Schröder, P. 2000. Normal meshes. In Proc. SIGGRAPH, 95--102.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Halstead, M., Kass, M., and DeRose, T. 1993. Efficient, fair interpolation using Catmull-Clark surfaces. In Proc. SIGGRAPH, 35--44.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. SIGGRAPH, 203--212.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hormann, K., and Greiner, G. 2000. Quadrilateral remeshing. In Proc. Vision Modeling and Visualization, 153--162.]]Google ScholarGoogle Scholar
  24. Karni, Z., and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proc. SIGGRAPH, 279--286.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. TOG 22, 3, 350--357. (Proc. SIGGRAPH).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Koren, Y., Carmel, L., and Harel, D. 2002. ACE:A fast multiscale eigenvector computation for drawing huge graphs. In Proc. InfoVis '02, 137--144.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. SIGGRAPH, 95--104.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proc. Pacific Graphics.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ni, X., Garland, M., and Hart, J. C. 2004. Fair Morse functions for extracting the topological structure of a surface mesh. TOG 23, 3, 613--622. (Proc. SIGGRAPH).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Owen, S., Staten, M. L., Canann, S. A., and Saigal, S. 1999. Q-Morph: An indirect approach to advancing front quad meshing. Intl. J. Num. Methods in Engineering 9, 1317--1340.]]Google ScholarGoogle ScholarCross RefCross Ref
  31. Pascucci, V., and Cole-McLaughlin, K. 2002. Efficient computation of the topology of level sets. In Proc. Visualization, 187--194.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 1, 15--36.]]Google ScholarGoogle ScholarCross RefCross Ref
  33. Ray, N., Li, W. C., Levy, B., Sheffer, A., and Alliez, P. 2005. Periodic global parameterization. TOG. (Accepted, pending revision).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Proc. Eurographics Symposium on Geometry Processing, 146--155.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. TOG 23, 3, 870--877. (Proc. SIGGRAPH).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Shimada, K., Liao, J.-H., and Itoh, T. 1998. Quadrilateral meshing with directionality control through the packing of square cells. In Seventh Int'l Meshing Roundtable, 61--75.]]Google ScholarGoogle Scholar
  37. Stam, J. 2003. Flows on surfaces of arbitrary topology. TOG 22, 3, 724--731. (Proc. SIGGRAPH).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Stander, B. T., and Hart, J. C. 1997. Guaranteeing the topology of implicit surface polygonization for interactive modeling. In Proc. SIGGRAPH, 279--286.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Taubin, G. 2000. Geometric signal processing on polygonal meshes. In State of the Art Report, Eurographics, 81--96.]]Google ScholarGoogle Scholar
  40. van Kreveld, M. J., van Oostrum, R., Bajaj, C. L., Pas-Cucci, V., and Schikore, D. 1997. Contour trees and small seed sets for isosurface traversal. In Sym. Comp. Geo., 212--220.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Velho, L., and Zorin, D. 2001. 4-8 subdivision. CAGD 18, 5, 397--427. Spec. Issue on Subdiv. Techniques.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Weber, G., Scheuermann, G., Hagen, H., and Hamann, B. 2002. Exploring scalar fields using critical isovalues. In Proc. Visualization, 171--178.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ying, L., and Zorin, D. 2004. A simple manifold-based construction of surfaces of arbitrary smoothness. TOG 23, 3, 271--275. (Proc. SIGGRAPH).]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spectral surface quadrangulation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 25, Issue 3
          July 2006
          742 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1141911
          Issue’s Table of Contents

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2006
          Published in tog Volume 25, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader