Abstract
Resampling raw surface meshes is one of the most fundamental operations used by nearly all digital geometry processing systems. The vast majority of this work has focused on triangular remeshing, yet quadrilateral meshes are preferred for many surface PDE problems, especially fluid dynamics, and are best suited for defining Catmull-Clark subdivision surfaces. We describe a fundamentally new approach to the quadrangulation of manifold polygon meshes using Laplacian eigenfunctions, the natural harmonics of the surface. These surface functions distribute their extrema evenly across a mesh, which connect via gradient flow into a quadrangular base mesh. An iterative relaxation algorithm simultaneously refines this initial complex to produce a globally smooth parameterization of the surface. From this, we can construct a well-shaped quadrilateral mesh with very few extraordinary vertices. The quality of this mesh relies on the initial choice of eigenfunction, for which we describe algorithms and hueristics to efficiently and effectively select the harmonic most appropriate for the intended application.
Supplemental Material
- Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. TOG 22, 3, 485--493. (Proc. SIGGRAPH).]] Google Scholar
Digital Library
- Alliez, P., Ucelli, G., Gotsman, C., and Attene, M. 2005. Recent advances in remeshing of surfaces. ftp://ftp-sop.inria.fr/geometrica/alliez/survey_remeshing.pdf.]]Google Scholar
- Banchoff, T. F. 1967. Critical points and curvature for embedded polyhedral surfaces. Differential Geometry, 3, 1, 257--268.]]Google Scholar
- Bern, M. W., and Eppstein, D. 1995. Mesh generation and optimal triangulation. In Computing in Euclidean Geometry, Lecture Notes on Computing #4. World Scientific, 47--123.]]Google Scholar
- Boier-Martin, I., Rushmeier, H., and Jin, J. 2004. Parameterization of triangle meshes over quadrilateral domains. In Proc. Eurographics Symposium on Geometry Processing, 197--207.]] Google Scholar
Digital Library
- Bremer, P.-T., Edelsbrunner, H., Hamann, B., and Pascucci, V. 2004. A topological hierarchy for functions on triangulated surfaces. TVCG 10, 4, 385--396.]]Google Scholar
Digital Library
- Chung, F. R. K. 1997. Spectral Graph Theory. American Mathematical Society.]]Google Scholar
- Courant, R., and Hilbert, D. 1953. Methods of Mathematical Physics, vol. I. Interscience Publishers, New York.]]Google Scholar
- Dong, S., Kircher, S., and Garland, M. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. CAGD 22, 5, 392--423.]]Google Scholar
Cross Ref
- Eck, M., and Hoppe, H. 1996. Automatic reconstruction of B-spline surfaces of arbitrary topological type. In Proc. SIGGRAPH, 325--334.]] Google Scholar
Digital Library
- Eck, M., DeRose, T. D., Duchamp, T., Hoppe, H., Louns-Bery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. In Proc. SIGGRAPH, 173--182.]] Google Scholar
Digital Library
- Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2002. Topological persistence and simplification. Discrete Comput. Geom. 28, 511--533.]]Google Scholar
Digital Library
- Edelsbrunner, H., Harer, J., and Zomorodian, A. 2003. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87--107.]]Google Scholar
Cross Ref
- Floater, M. S., and Hormann, K. 2004. Surface parameterization: A tutorial and survey. In Multiresolution in Geometric Modelling.]]Google Scholar
- Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1 (Mar.), 19--27.]] Google Scholar
Digital Library
- Friedel, I., Schröder, P., and Khodakovsky, A. 2004. Variational normal meshes. TOG 23, 4, 1061--1073.]] Google Scholar
Digital Library
- Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proc. SIGGRAPH, 209--216.]] Google Scholar
Digital Library
- Garland, M. 1999. Multiresolution modeling: Survey & future opportunities. In State of the Art Report, Eurographics, 111--131.]]Google Scholar
- Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. TOG 21, 3, 355--361. (Proc. SIGGRAPH).]] Google Scholar
Digital Library
- Guskov, I., Vidimce, K., Sweldens, W., and Schröder, P. 2000. Normal meshes. In Proc. SIGGRAPH, 95--102.]] Google Scholar
Digital Library
- Halstead, M., Kass, M., and DeRose, T. 1993. Efficient, fair interpolation using Catmull-Clark surfaces. In Proc. SIGGRAPH, 35--44.]] Google Scholar
Digital Library
- Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. SIGGRAPH, 203--212.]] Google Scholar
Digital Library
- Hormann, K., and Greiner, G. 2000. Quadrilateral remeshing. In Proc. Vision Modeling and Visualization, 153--162.]]Google Scholar
- Karni, Z., and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proc. SIGGRAPH, 279--286.]] Google Scholar
Digital Library
- Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. TOG 22, 3, 350--357. (Proc. SIGGRAPH).]] Google Scholar
Digital Library
- Koren, Y., Carmel, L., and Harel, D. 2002. ACE:A fast multiscale eigenvector computation for drawing huge graphs. In Proc. InfoVis '02, 137--144.]] Google Scholar
Digital Library
- Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. SIGGRAPH, 95--104.]] Google Scholar
Digital Library
- Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proc. Pacific Graphics.]] Google Scholar
Digital Library
- Ni, X., Garland, M., and Hart, J. C. 2004. Fair Morse functions for extracting the topological structure of a surface mesh. TOG 23, 3, 613--622. (Proc. SIGGRAPH).]] Google Scholar
Digital Library
- Owen, S., Staten, M. L., Canann, S. A., and Saigal, S. 1999. Q-Morph: An indirect approach to advancing front quad meshing. Intl. J. Num. Methods in Engineering 9, 1317--1340.]]Google Scholar
Cross Ref
- Pascucci, V., and Cole-McLaughlin, K. 2002. Efficient computation of the topology of level sets. In Proc. Visualization, 187--194.]] Google Scholar
Digital Library
- Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 1, 15--36.]]Google Scholar
Cross Ref
- Ray, N., Li, W. C., Levy, B., Sheffer, A., and Alliez, P. 2005. Periodic global parameterization. TOG. (Accepted, pending revision).]] Google Scholar
Digital Library
- Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Proc. Eurographics Symposium on Geometry Processing, 146--155.]] Google Scholar
Digital Library
- Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. TOG 23, 3, 870--877. (Proc. SIGGRAPH).]] Google Scholar
Digital Library
- Shimada, K., Liao, J.-H., and Itoh, T. 1998. Quadrilateral meshing with directionality control through the packing of square cells. In Seventh Int'l Meshing Roundtable, 61--75.]]Google Scholar
- Stam, J. 2003. Flows on surfaces of arbitrary topology. TOG 22, 3, 724--731. (Proc. SIGGRAPH).]] Google Scholar
Digital Library
- Stander, B. T., and Hart, J. C. 1997. Guaranteeing the topology of implicit surface polygonization for interactive modeling. In Proc. SIGGRAPH, 279--286.]] Google Scholar
Digital Library
- Taubin, G. 2000. Geometric signal processing on polygonal meshes. In State of the Art Report, Eurographics, 81--96.]]Google Scholar
- van Kreveld, M. J., van Oostrum, R., Bajaj, C. L., Pas-Cucci, V., and Schikore, D. 1997. Contour trees and small seed sets for isosurface traversal. In Sym. Comp. Geo., 212--220.]] Google Scholar
Digital Library
- Velho, L., and Zorin, D. 2001. 4-8 subdivision. CAGD 18, 5, 397--427. Spec. Issue on Subdiv. Techniques.]]Google Scholar
Digital Library
- Weber, G., Scheuermann, G., Hagen, H., and Hamann, B. 2002. Exploring scalar fields using critical isovalues. In Proc. Visualization, 171--178.]] Google Scholar
Digital Library
- Ying, L., and Zorin, D. 2004. A simple manifold-based construction of surfaces of arbitrary smoothness. TOG 23, 3, 271--275. (Proc. SIGGRAPH).]] Google Scholar
Digital Library
Index Terms
Spectral surface quadrangulation
Recommendations
Quadrangulation through morse-parameterization hybridization
We introduce an approach to quadrilateral meshing of arbitrary triangulated surfaces that combines the theoretical guarantees of Morse-based approaches with the practical advantages of parameterization methods. We first construct, through an eigensolver ...
Spectral surface quadrangulation
SIGGRAPH '06: ACM SIGGRAPH 2006 PapersResampling raw surface meshes is one of the most fundamental operations used by nearly all digital geometry processing systems. The vast majority of this work has focused on triangular remeshing, yet quadrilateral meshes are preferred for many surface ...
Spectral quadrangulation with orientation and alignment control
SIGGRAPH Asia '08: ACM SIGGRAPH Asia 2008 papersThis paper presents a new quadrangulation algorithm, extending the spectral surface quadrangulation approach where the coarse quadrangular structure is derived from the Morse-Smale complex of an eigenfunction of the Laplacian operator on the input mesh. ...





Comments