skip to main content
article

Subspace gradient domain mesh deformation

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

In this paper we present a general framework for performing constrained mesh deformation tasks with gradient domain techniques. We present a gradient domain technique that works well with a wide variety of linear and nonlinear constraints. The constraints we introduce include the nonlinear volume constraint for volume preservation, the nonlinear skeleton constraint for maintaining the rigidity of limb segments of articulated figures, and the projection constraint for easy manipulation of the mesh without having to frequently switch between multiple viewpoints. To handle nonlinear constraints, we cast mesh deformation as a nonlinear energy minimization problem and solve the problem using an iterative algorithm. The main challenges in solving this nonlinear problem are the slow convergence and numerical instability of the iterative solver. To address these issues, we develop a subspace technique that builds a coarse control mesh around the original mesh and projects the deformation energy and constraints onto the control mesh vertices using the mean value interpolation. The energy minimization is then carried out in the subspace formed by the control mesh vertices. Running in this subspace, our energy minimization solver is both fast and stable and it provides interactive responses. We demonstrate our deformation constraints and subspace deformation technique with a variety of constrained deformation examples.

Skip Supplemental Material Section

Supplemental Material

Low Resolution
High Resolution

References

  1. Alexa, M. 2003. Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 2, 105--114.Google ScholarGoogle ScholarCross RefCross Ref
  2. Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2005. Mesh editing with curvature flow laplacian operator. Tech. rep., Computer Science Technical Report, HKUST-CS05-10.Google ScholarGoogle Scholar
  3. Barbic, J., and James, D. 2005. Real-time subspace integration for st. venant-kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Botsch, M., and Kobbelt, L. 2003. Multiresolution surface representation based on displacement volumes. Computer Graphics Forum 22, 3, 483--492.Google ScholarGoogle ScholarCross RefCross Ref
  5. Coquillart, S. 1990. Extended free-form deformation: a sculpturing tool for 3d geometric modeling. In SIGGRAPH 90, 187--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Desbrun, M., Meyer, M., Schroder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In SIGGRAPH 99, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Floater, M. S., Kos, G., and Reimers, M. 2005. Mean value coordinates in 3d. CAGD 22, 623--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Guskov, I., Sweldens, W., and Schroder, P. 1999. Multiresolution signal processing for meshes. In SIGGRAPH 99, 325--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hirota, G., Maheshwari, R., and Lin, M. C. 1999. Fast volume-preserving free form deformation using multi-level optimization. In Proceedings of the fifth ACM symposium on Solid modeling and applications, 234--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hsu, W. M., Hughes, J. F., and Kaufman, H. 1992. Direct manipulation of free-form deformations. In SIGGRAPH 92, 177--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kaporin, I., and Axelsson, O. 1994. On a class of nonlinear equation solvers based on the residual norm reduction over a sequence of affine subspaces. SIAM J. Scientific Computing 16, 1, 228--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kavan, L., and Zara, J. 2005. Spherical blend skinning: a real-time deformation of articulated models. In Proceedings of the symposium on Interactive 3D graphics and games, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In SIGGRAPH 98, 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: real time large deformation character skinning in hardware. In Proceedings of the symposium on Computer animation, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lander, J. 1998. Skin them bones: Game programming for the web generation. In Game Developer Magazine.Google ScholarGoogle Scholar
  17. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In SIGGRAPH 2000, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., and Seidel, H.-P. 2004. Differential coordinates for interactive mesh editing. In Proceedings of Shape Modeling International, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24, 3, 479--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. MacCracken, R., and Joy, K. I. 1996. Free-form deformations with lattices of arbitrary topology. In SIGGRAPH 96, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Madsen, K., Nielsen, H., and Tingleff, O. 2004. Optimization with constraints. Tech. rep., Informatics and Mathematical Modelling, Technical University of Denmark.Google ScholarGoogle Scholar
  22. Milliron, T., Jensen, R. J., Barzel, R., and Finkelstein, A. 2002. A framework for geometric warps and deformations. ACM Trans. Graph. 21, 1, 20--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nealen, A., Sorkine, O., Alexa, M., and Cohen-Or, D. 2005. A sketch-based interface for detail-preserving mesh editing. ACM Trans. Graph. 24, 3, 1142--1147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rappaport, A., Sheffer, A., and Bercovier, M. 1996. Volume-preserving free-form solids. IEEE Transactions on Visualization and Computer Graphics 2, 1 (Mar.), 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sander, P. V., Gu, X., Gortler, S. J., Hoppe, H., and Snyder, J. 2000. Silhouette clipping. In SIGGRAPH 2000, 327--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In SIGGRAPH 86, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sheffer, A., and Kraevoy, V. 2004. Pyramid coordinates for morphing and deformation. In Proceedings of 3DPVT '04, 68--75. Google ScholarGoogle ScholarCross RefCross Ref
  28. Shewchuk, J. R. 2002. What is a good linear element? interpolation, conditioning, and quality measures. In 11th International Meshing Roundtable, 115--126.Google ScholarGoogle Scholar
  29. Singh, K., and Fiume, E. 1998. Wires: a geometric deformation technique. In SIGGRAPH 98, 405--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the symposium on Geometry processing, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Steihaug, T. 1995. An inexact gauss-newton approach to mildly nonlinear problems. Tech. rep., Dept. of Mathematics, University of Linkoping.Google ScholarGoogle Scholar
  32. Sumner, R. W., Zwicker, M., Gotsman, C., and Popovic, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wilhelms, J., and Gelder, A. V. 1997. Anatomically based modeling. In SIGGRAPH 97, 173--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3, 644--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24, 3, 496--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zorin, D., Schroder, P., and Sweldens, W. 1997. Interactive multiresolution mesh editing. In SIGGRAPH 97, 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Subspace gradient domain mesh deformation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 25, Issue 3
            July 2006
            742 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1141911
            Issue’s Table of Contents

            Copyright © 2006 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2006
            Published in tog Volume 25, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader