10.1145/1143844.1143905acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicpsprocConference Proceedings
ARTICLE

Fast particle smoothing: if I had a million particles

ABSTRACT

We propose efficient particle smoothing methods for generalized state-spaces models. Particle smoothing is an expensive O(N2) algorithm, where N is the number of particles. We overcome this problem by integrating dual tree recursions and fast multipole techniques with forward-backward smoothers, a new generalized two-filter smoother and a maximum a posteriori (MAP) smoother. Our experiments show that these improvements can substantially increase the practicality of particle smoothing.

References

  1. Bresler, Y. (1986). Two-filter formula for discrete-time non-linear Bayesian smoothing. IJC, 43, 629--641.Google ScholarGoogle Scholar
  2. Briers, M., Doucet, A., & Maskell, S. R. (2004). Smoothing algorithms for state-space models (Technical Report CUED/F-INFENG/TR.498). Cambridge University Engineering Department.Google ScholarGoogle Scholar
  3. Cemgil, A., & Kappen, H. (2003). Monte Carlo methods for tempo tracking and rhythm quantization. JAIR, 18, 45--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Doucet, A., de Freitas, N., & Gordon, N. J. (Eds.). (2001). Sequential Monte Carlo methods in practice. Springer-Verlag.Google ScholarGoogle Scholar
  5. Felzenswalb, P. F., Huttenlocher, D. P., & Kleinberg, J. M. (2003). Fast Algorithms for Large-State-Space HMMs with Application to Web Usage Analysis. NIPS 16.Google ScholarGoogle Scholar
  6. Fraser, D. C., & Potter, J. E. (1969). The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automatic Control, 987--390.Google ScholarGoogle ScholarCross RefCross Ref
  7. Godsill, S. J., Doucet, A., & West, M. (2001). Maximum a posteriori sequence estimation using Monte Carlo particle filters. Ann. Inst. Stat. Math., 53, 82--96.Google ScholarGoogle ScholarCross RefCross Ref
  8. Gray, A., & Moore, A. (2000). 'N-Body' Problems in Statistical Learning. NIPS 4 (pp. 521--527).Google ScholarGoogle Scholar
  9. Gray, A., & Moore, A. (2003). Rapid evaluation of multiple density models. Artificial Intelligence and Statistics.Google ScholarGoogle Scholar
  10. Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations. JCP, 73, 325--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Greengard, L., & Sun, X. (1998). A new version of the Fast gauss transform. Doc. Math., ICM, 575--584.Google ScholarGoogle Scholar
  12. Isard, M., & Blake, A. (1998). A smoothing filter for Condensation. ECCV (pp. 767--781). Freiburg, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Review of Economic Studies, 65, 361--93.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. JCGS, 5, 1--25.Google ScholarGoogle Scholar
  15. Klaas, M., Lang, D., & de Freitas, N. (2005). Fast maximum a posteriori inference in Monte Carlo state spaces. Artificial Intelligence and Statistics.Google ScholarGoogle Scholar
  16. Lang, D., & de Freitas, N. (2004). Beat tracking the graphical model way. NIPS. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  17. Mayne, D. Q. (1966). A solution of the smoothing problem for linear dynamic systems. Automatica, 4, 73--92.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Moore, A. (2000). The Anchors Hierarchy: Using the triangle inequality to survive high dimensional data (Technical Report CMU-RI-TR-00-05). Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.Google ScholarGoogle Scholar
  19. Okuma, K., Taleghani, A., de Freitas, N., Little, J., & Lowe, D. (2004). A boosted particle filter: Multitarget detection and tracking. ECCV. Prague.Google ScholarGoogle Scholar
  20. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan-Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Vermaak, J., Doucet, A., & Perez, P. (2003). Maintaining multi-modality through mixture tracking. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Yang, C., Duraiswami, R., Gumerov, N. A., & Davis, L. S. (2003). Improved fast Gauss transform and efficient kernel density estimation. ICCV. Nice. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast particle smoothing

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader
          About Cookies On This Site

          We use cookies to ensure that we give you the best experience on our website.

          Learn more

          Got it!