skip to main content
10.1145/1230100.1230102acmconferencesArticle/Chapter ViewAbstractPublication Pagesi3dConference Proceedingsconference-collections
Article

Geometry engine optimization: cache friendly compressed representation of geometry

Published:30 April 2007Publication History

ABSTRACT

Recent advances in graphics architecture focus on improving texture performance and pixel processing. These have paralleled advances in rich pixel shading algorithms for realistic images. However, applications that require significantly more geometry processing than pixel processing suffer due to limited resource being devoted to the geometry processing part of the graphics pipeline. We present an algorithm to improve the effective geometry processing performance without adding significant hardware. This algorithm computes a representation for geometry that reduces the bandwidth required to transmit it to the graphics subsystem. It also reduces the total geometry processing requirement by increasing the effectiveness of the vertex cache. A goal of this algorithm is to keep the primitive assembly simple for easy hardware implementation.

References

  1. Alliez, P., and Desbrun, M. 2001. Progressive compression for lossless transmission of triangle meshes. In Proc. ACM SIGGRAPH, ACM, 195--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bar-Yehuda, R., and Gotsman, C. 1996. Time/space tradeoffs for polygon mesh rendering. ACM Transactions on Graphics 15, 2, 141--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bogomjakov, A., and Gotsman, C. 2001. Universal rendering sequences for transparent vertex caching of progressive meshes. In Proc. Graphics Interface, ACM, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chow, M. M. 1997. Optimized geometry compression for real-time rendering. In Proc. IEEE Visualization, IEEE, 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cover, T. M., and Joy, A. T. 1991. Elements of Information. John Wiley and Sons.Google ScholarGoogle Scholar
  6. Deering, M. F. 1995. Geometry compression. In Proc. ACM SIGGRAPH, ACM, 13--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Diaz-Gutierrez, P., Bhushan, A., Gopi, M., and Pajarola, R. 2006. Single-strips for fast interactive rendering. Visual Computer 22, 6 (June), 372--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Estkowski, R., Mitchell, J. S. B., and Xiang, X. 2002. Optimal decomposition of polygonal models into triangle strips. In Proc. Symposium on Computational Geometry, ACM, 254--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Evans, F., Skiena, S. S., and Varshney, A. 1996. Optimizing triangle strips for fast rendering. In Proc. IEEE Visualization, IEEE, 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gandoin, P. M., and Devillers, O. 2002. Progressive lossless compression of arbitrary simplicial complexes. In Proc. ACM SIGGRAPH, ACM, 372--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gueziec, A. P., Bossen, F., Taubin, G., and Silva, C. 1999. Efficient compression of non-manifold meshes. In Proc. IEEE Visualization, IEEE, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gumhold, S., and Strasser, W. 1998. Real time compression of triangle meshes. In Computer Graphics, IEEE, 133--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hoppe, H. 1999. Optimization of mesh locality for transparent vertex caching. In Proc. ACM SIGGRAPH, ACM, 269--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. IdSoftware, 2005. http://www.idsoftware.com.Google ScholarGoogle Scholar
  15. Isenburg, M. 2001. Triangle strip compression. Computer Graphics Forum 20, 2, 91--101.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kronrod, B., and Gotsman, C. 2002. Optimized compression of triangle mesh geometry using prediction trees. In Proceedings of 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT-02), IEEE, 602--608.Google ScholarGoogle Scholar
  17. Lin, G., and Yu, T. P. Y. 2006. An improved vertex caching scheme for 3d mesh rendering. IEEE Transactions on Visualization and Computer Graphics 12, 4, 640--648. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nvidia, 2001. D3d optimization: http://developer.nvidia.com/attach/6523.Google ScholarGoogle Scholar
  19. Nvidia, 2004. Triangle strip library:developer.nvidia.com/object/nvtristrip_library.html.Google ScholarGoogle Scholar
  20. Purnomo, B., Bilodeau, J., Cohen, J. D., and Kumar, S. 2005. Hardware-compatible vertex compression using quantization and simplification. ACM SIGGRAPH/Eurographics Symposium on Graphics Hardware 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rossignac, J. 1999. Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 1, 47--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Szymczak, A., King, D., and Rossignac, J. 2001. An edgebreaker-based efficient compression scheme for regular meshes. Comput. Geom. Theory Appl. 20, 1--2, 53--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Taubin, G., and Rossignac, J. 1998. Geometric compression through topological surgery. ACM Transactions on Graphics 17, 2, 84--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Touma, C., and Gotsman, C. 1998. Triangle mesh compression. In Proc. Graphics Interface, ACM, 26--34.Google ScholarGoogle Scholar
  25. Xiang, X., Held, M., and Mitchell, J. S. B. 1999. Fast and effective stripification of polygonal surface models. In Proceedings of the 1999 symposium on Interactive 3D graphics, ACM Press, ACM, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yoon, S.-E., and Lindstorm, P. 2006. Mesh layouts for block-based caches. IEEE Transactions on Visualization and Computer Graphics 12, 5, 47--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yoon, S.-E., Lindstrom, P., Pascucci, V., and Manocha, D. 2005. Cache-oblivious mesh layouts. ACM Trans. Graph. 24, 3, 886--893. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Geometry engine optimization: cache friendly compressed representation of geometry

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        I3D '07: Proceedings of the 2007 symposium on Interactive 3D graphics and games
        April 2007
        196 pages
        ISBN:9781595936288
        DOI:10.1145/1230100

        Copyright © 2007 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 April 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate148of485submissions,31%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!