skip to main content
10.1145/1275808.1276446acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Rotational symmetry field design on surfaces

Published:29 July 2007Publication History

ABSTRACT

Designing rotational symmetries on surfaces is a necessary task for a wide variety of graphics applications, such as surface parameterization and remeshing, painterly rendering and pen-and-ink sketching, and texture synthesis. In these applications, the topology of a rotational symmetry field such as singularities and separatrices can have a direct impact on the quality of the results. In this paper, we present a design system that provides control over the topology of rotational symmetry fields on surfaces.

As the foundation of our system, we provide comprehensive analysis for rotational symmetry fields on surfaces and present efficient algorithms to identify singularities and separatrices. We also describe design operations that allow a rotational symmetry field to be created and modified in an intuitive fashion by using the idea of basis fields and relaxation. In particular, we provide control over the topology of a rotational symmetry field by allowing the user to remove singularities from the field or to move them to more desirable locations.

At the core of our analysis and design implementations is the observations that N-way rotational symmetries can be described by symmetric N-th order tensors, which allows an efficient vector-based representation that not only supports coherent definitions of arithmetic operations on rotational symmetries but also enables many analysis and design operations for vector fields to be adapted to rotational symmetry fields.

To demonstrate the effectiveness of our approach, we apply our design system to pen-and-ink sketching and geometry remeshing.

Skip Supplemental Material Section

Supplemental Material

pps055.mp4

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3 (July), 485--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chen, G., Mischaikow, K., Laramee, R. S., Pilarczyk, P., and Zhang, E. 2007. Vector field editing and periodic orbit extraction using morse decomposition. IEEE Transactions on Visualization and Computer Graphics 13, 4, 769--785. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cohen-Steiner, D., and Morvan, J. 2003. Restricted delaunay triangulations and normal cycle. In 19th Annual ACM Symposium Computational Geometry. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Delmarcelle, T., and Hesselink, L. 1994. The topology of symmetric, second-order tensor fields. IEEE Computer Graphics and Applications, 140--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dong, S., Kircher, S., and Garland, M. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer Aided Geometry Design. (to appear in upcoming Special Issue on Geometry Processing). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Floater, M. S. 2003. Mean value coordinates. CAGD, 20, 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Girshick, A., Interrante, V., Haker, S., and Lemoine, T. 2000. Line direction matters: an argument for the use of principal directions in 3D line drawings. Proceedings of NPAR, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Helman, J. L., and Hesselink, L. 1991. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications 11 (May), 36--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 2000) (Aug.), 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. Computer Graphics and Applications, 12th Pacific Conference on (PG'04), 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. VisMath.Google ScholarGoogle Scholar
  13. Mischaikow, K., and Mrozek, M. 2002. Conley index. Hand-book of Dynamic Systems, North-Holland 2, 393--460.Google ScholarGoogle Scholar
  14. Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped textures. Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 2000) (Aug.), 465--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Transactions on Graphics 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ray, N., Vallet, B., Li, W.-C., and Levy, B. 2006. N-symmetry direction fields on surfaces of arbitrary genus. In Tech Report.Google ScholarGoogle Scholar
  17. Rusinkiewicz, S. 2004. Estimating curvatures and their derivatives on triangle meshes. In 3DPVT '04: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium on (3DPVT'04), 486--493. Google ScholarGoogle ScholarCross RefCross Ref
  18. Scheuermann, G., Krger, H., Menzel, M., and Rockwood, A. P. 1998. Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Graphics 4, 2, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3 (July), 724--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Theisel, H. 2002. Designing 2d vector fields of arbitrary topology. In Computer Graphics Forum (Proceedings Eurographics 2002), vol. 21, 595--604.Google ScholarGoogle Scholar
  21. Tong, Y., Lombeyda, S., Hirani, A., and Desbrun, M. 2003. Discrete multiscale vector field decomposition. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3 (July), 445--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. ACM/Eurographics Symposium on Geometry Processing, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tricoche, X. 2002. Vector and Tensor Field Topology Simplification, Tracking, and Visualization. PhD thesis, Universität Kaiserslautern.Google ScholarGoogle Scholar
  24. Turk, G. 2001. Texture synthesis on surfaces. Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 2001), 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. van Wijk, J. J. 2002. Image based flow visualization. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3 (July), 745--754. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. van Wijk, J. J. 2003. Image based flow visualization for curved surfaces. In: G. Turk, J. van Wijk, R. Moorhead (eds.), Proceedings IEEE Visualization (Oct.), 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, K., Weiwei, Tong, Y., Desbrun, M., and Schröder, P. 2006. Edge subdivision schemes and the construction of smooth vector fields. ACM Transactions on Graphics 25, 3, 1041--1048. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wei, L. Y., and Levoy, M. 2001. Texture synthesis over arbitrary manifold surfaces. Computer Graphics Proceedings, of the Conference Series (SIGGRAPH 2001), 355--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ying, L., Hertzmann, A., Biermann, H., and Zorin, D. 2001. Texture and shape synthesis on surfaces. Proc. 12th Eurographics Workshop on Rendering, 301--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Transactions on Graphics 25, 4, 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhang, E., Hays, J., and Turk, G. 2007. Interactive tensor field design and visualization on surfaces. IEEE Transactions on Visualization and Computer Graphics 13, 1, 94--107. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Rotational symmetry field design on surfaces

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!