skip to main content
article

Robust on-line computation of Reeb graphs: simplicity and speed

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

Reeb graphs are a fundamental data structure for understanding and representing the topology of shapes. They are used in computer graphics, solid modeling, and visualization for applications ranging from the computation of similarities and finding defects in complex models to the automatic selection of visualization parameters.

We introduce an on-line algorithm that reads a stream of elements (vertices, triangles, tetrahedra, etc.) and continuously maintains the Reeb graph of all elements already reed. The algorithm is robust in handling non-manifold meshes and general in its applicability to input models of any dimension.

Optionally, we construct a skeleton-like embedding of the Reeb graph, and/or remove topological noise to reduce the output size.

For interactive multi-resolution navigation we also build a hierarchical data structure which allows real-time extraction of approximated Reeb graphs containing all topological features above a given error threshold.

Our extensive experiments show both high performance and practical linear scalability for meshes ranging from thousands to hundreds of millions of triangles. We apply our algorithm to the largest, most general, triangulated surfaces available to us, including 3D, 4D and 5D simplicial meshes. To demonstrate one important application we use Reeb graphs to find and highlight topological defects in meshes, including some widely believed to be "clean."

Skip Supplemental Material Section

Supplemental Material

pps058.mp4

References

  1. Agarwal, P. K., Edelsbrunner, H., Harrer, J., and Wang, Y. 2004. Extreme elevation on a 2-manifold. In SCG '04: Proceedings of the ACM Symp. on Computational Geometry, 357--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Attene, M., Biasotti, S., and Spagbuolo, S. 2001. Remeshing techniques for topological analysis. In Proc. of Shape Modeling International, 142--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Biasotti, S., Mortara, M., and Spagnuolo, M. 2000. Surface compression and reconstruction using Reeb graphs and shape analysis. In Proc. of Spring Conf. on Comp. Graph., 175--184.Google ScholarGoogle Scholar
  4. Biasotti, S. 2001. Topological techniques for shape understanding. In Central European Seminar on Computer Graphics, CESCG 2001.Google ScholarGoogle Scholar
  5. Carr, H., Snoeyink, J., and Axen, U. 2003. Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24, 3, 75--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carr, H., Snoeyink, J., and van de Panne, M. 2004. Simplifying flexible isosurfaces using local geometric measures. In VIS '04: Proceedings of the IEEE Visualization 2004, 497--504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chiang, Y.-J., Lenz, T., Lu, X., and Rote, G. 2005. Simple and optimal output-sensitive construction of contour trees using monotone paths. Comp. Geom.: Theory and App. 30, 2, 165--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. 2003. Loops in reeb graphs of 2-manifolds. In Proceedings of the 19th Annual Symposium on Computational Geometry, ACM Press, 344--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E. 1989. Making data structures persistent. In J. Comput. Sys. Sci, vol. 38, 86--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2000. Topological persistence and simplifications, In FOCS '00: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, 454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Funkhouser, T., and Kazhdan, M. 2004. Shape-based retrieval and analysis of 3D models. In SIGGRAPH '04: Proceedings of the conference on SIGGRAPH '04: Proceedings of the conference on SIGGRAPH 2004 course notes, ACM Press, New York, NY, USA, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of ACM SIGGRPAH 2001, E. Fiume, Ed., ACM, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Isenburg, M., and Lindstrom, P. 2005. Streaming meshes. In Proceedings of the IEEE Visualization 2005 (VIS'05), IEEE Computer Society, 231--238.Google ScholarGoogle Scholar
  14. Isenburg, M., Lindstrom, P., Gumhold, S., and Shewchuk, J. 2006. Streaming compression of tetrahedral volume meshes. In Proceedings of Graphics Interface 2006, 115--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lazarus, and Verroust, A. 1999. Level set diagrams of polyhedral objects. In Proceedings of the fifth ACM Symposium on Solid mMdeling and Applications, ACM Press, 130--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ni, X., Garland, M., and Hart, J. C. 2004. Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. on Graphics (TOG), 613--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Pascucci, V., and Cole-McLaughlin, K. 2003. Parallel computation of the topology of level sets. Algorithmica 38, 1 (Oct.), 249--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Reeb, G. 1946. Sur les points singuliers d'une forme de pfaff completement intergrable ou d'une fonction numerique {on the singular points of a complete integral pfaff form or of a numerical function}. Comptes Rendus Acad. Science Paris 222, 847--849.Google ScholarGoogle Scholar
  19. Shinagawa, Y., and Kunii, T. 1991. Constructing a Reeb graph automatically from cross sections. IEEE Computer Graphics and Applications 11, 44--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shinagawa, Y., Kunii, T., and Kergosien, Y. L. 1991. Surface coding based on Morse theory. IEEE Computer Graphics and Applications 11, 66--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Steiner, D., and Fischer, A. 2001. Topology recognition of 3D closed freeform objects based on topological graphs. In SMA '01: Proceedings of the sixth ACM symposium on Solid modeling and applications, ACM Press, New York, NY, USA, 305--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Steiner, D., and Fischer, A. 2002. Cutting 3D freeform objects with genus-n into single boundary surfaces using topological graphs. In SMA '02: Proceedings of the seventh ACM symposium on Solid modeling and applications, 336--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Takahashi, S., Shinagawa, Y., and Kunii, T. L. 1997. A feature-based approach for smooth surfaces. In Proc. of the Fourth Symp on Solid Modeling and Applications, 97--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. van Kreveld, M. J., van Oostrum, R., Bajaj, C. L., Pascucci, V., and Schikore, D. 1997. Contour trees and small seed sets for isosurface traversal. In Symposium on Computational Geometry, 212--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Weber, G., Scheuermann, G., Hagen, H., and Hamann, B. 2002. Exploring scalar fields using critical isovalues. In Proc. IEEE Visualization '02, IEEE Computer Society Press, IEEE, 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wood, Z. J., Desbrun, M., Schroder, P., and Breen, D. E. 2000. Semi-regular mesh extraction from volumes. In Proc. IEEE Visualization '00, IEEE Computer Society Press, Los Alamitos California, 275--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wood, Z., Hoppe, H., Desbrun, M., and Schröder, P. 2004. Removing excess topology from isosurfaces. ACM Trans. Graphics (TOG) 23, 2, 190--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wu, J., and Kobbelt, L. 2003. A stream algorithm for the decimation of massive meshes. In Proc. Graph. Interf., 185--192.Google ScholarGoogle Scholar

Index Terms

  1. Robust on-line computation of Reeb graphs: simplicity and speed

                  Recommendations

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in

                  Full Access

                  • Published in

                    cover image ACM Transactions on Graphics
                    ACM Transactions on Graphics  Volume 26, Issue 3
                    July 2007
                    976 pages
                    ISSN:0730-0301
                    EISSN:1557-7368
                    DOI:10.1145/1276377
                    Issue’s Table of Contents

                    Copyright © 2007 ACM

                    Publisher

                    Association for Computing Machinery

                    New York, NY, United States

                    Publication History

                    • Published: 29 July 2007
                    Published in tog Volume 26, Issue 3

                    Permissions

                    Request permissions about this article.

                    Request Permissions

                    Check for updates

                    Qualifiers

                    • article

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader
                  About Cookies On This Site

                  We use cookies to ensure that we give you the best experience on our website.

                  Learn more

                  Got it!